Switch to: References

Add citations

You must login to add citations.
  1. Idealizations and Analogies: Explaining Critical Phenomena.Quentin Rodriguez - 2021 - Studies in History and Philosophy of Science Part A 89 (C):235-247.
    The “universality” of critical phenomena is much discussed in philosophy of scientific explanation, idealizations and philosophy of physics. Lange and Reutlinger recently opposed Batterman concerning the role of some deliberate distortions in unifying a large class of phenomena, regardless of microscopic constitution. They argue for an essential explanatory role for “commonalities” rather than that of idealizations. Building on Batterman's insight, this article aims to show that assessing the differences between the universality of critical phenomena and two paradigmatic cases of “commonality (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pursuing Natural Piety: Understanding Ontological Emergence and Distinguishing it from Physicalism.Peter Fazekas - 2014 - Dialectica 68 (1):97-119.
    This paper focuses on two issues related to ontological emergence: whether it is a coherent notion, and its relation to the doctrine of physicalism. First, it is argued that ontological emergence is best understood as a thesis relying on three fundamental tenets claiming that emergents are basic, genuinely causal, and determined by the physical realm. The paper elucidates the roles of these tenets, and introduces an interpretation that is able to resolve any apparent contradiction between the tenets, thereby supporting the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The gauge argument: A Noether Reason.Henrique Gomes, Bryan W. Roberts & Jeremy Butterfield - 2022 - In James Read & Nicholas J. Teh (eds.), The physics and philosophy of Noether's theorems. Cambridge: Cambridge University Press. pp. 354-377.
    Why is gauge symmetry so important in modern physics, given that one must eliminate it when interpreting what the theory represents? In this paper we discuss the sense in which gauge symmetry can be fruitfully applied to constrain the space of possible dynamical models in such a way that forces and charges are appropriately coupled. We review the most well-known application of this kind, known as the 'gauge argument' or 'gauge principle', discuss its difficulties, and then reconstruct the gauge argument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Inferential Account of Model Explanation.Wei Fang - 2019 - Philosophia 47 (1):99-116.
    This essay develops an inferential account of model explanation, based on Mauricio Suárez’s inferential conception of scientific representation and Alisa Bokulich’s counterfactual account of model explanation. It is suggested that the fact that a scientific model can explain is essentially linked to how a modeler uses an established model to make various inferences about the target system on the basis of results derived from the model. The inference practice is understood as a two-step activity, with the first step involving making (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Philosophy of Physics.Mario Bacelar Valente - 2012 - History and Philosophy of Science and Technology - EOLSS.
    Philosophy of Physics has emerged recently as a scholarly important subfield of philosophy of science. However outside the small community of experts it is not a well-known field. It is not clear even to experts the exact nature of the field: how much philosophical is it? What is its relation to physics? In this work it is presented an overview of philosophy of physics that tries to answer these and other questions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation in Computational Neuroscience: Causal and Non-causal.M. Chirimuuta - 2018 - British Journal for the Philosophy of Science 69 (3):849-880.
    This article examines three candidate cases of non-causal explanation in computational neuroscience. I argue that there are instances of efficient coding explanation that are strongly analogous to examples of non-causal explanation in physics and biology, as presented by Batterman, Woodward, and Lange. By integrating Lange’s and Woodward’s accounts, I offer a new way to elucidate the distinction between causal and non-causal explanation, and to address concerns about the explanatory sufficiency of non-mechanistic models in neuroscience. I also use this framework to (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Minimal Models and the Generalized Ontic Conception of Scientific Explanation.Mark Povich - 2018 - British Journal for the Philosophy of Science 69 (1):117-137.
    Batterman and Rice ([2014]) argue that minimal models possess explanatory power that cannot be captured by what they call ‘common features’ approaches to explanation. Minimal models are explanatory, according to Batterman and Rice, not in virtue of accurately representing relevant features, but in virtue of answering three questions that provide a ‘story about why large classes of features are irrelevant to the explanandum phenomenon’ ([2014], p. 356). In this article, I argue, first, that a method (the renormalization group) they propose (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Humean scientific explanation.Elizabeth Miller - 2015 - Philosophical Studies 172 (5):1311-1332.
    In a recent paper, Barry Loewer attempts to defend Humeanism about laws of nature from a charge that Humean laws are not adequately explanatory. Central to his defense is a distinction between metaphysical and scientific explanations: even if Humeans cannot offer further metaphysical explanations of particular features of their “mosaic,” that does not preclude them from offering scientific explanations of these features. According to Marc Lange, however, Loewer’s distinction is of no avail. Defending a transitivity principle linking scientific explanantia to (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Philosophy of the Physical Sciences.Chris Smeenk & Hoefer Carl - 2016 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. Oxford University Press USA.
    The authors survey some debates about the nature and structure of physical theories and about the connections between our physical theories and naturalized metaphysics. The discussion is organized around an “ideal view” of physical theories and criticisms that can be raised against it. This view includes controversial commitments regarding the best analysis of physical modalities and intertheory relations. The authors consider the case in favor of taking laws as the primary modal notion, discussing objections related to alleged violations of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Complexity Theory.Michael Strevens - 2016 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. Oxford University Press USA.
    Complexity theory attempts to explain, at the most general possible level, the interesting behaviors of complex systems. Two such behaviors are the emergence of simple or stable high-level behavior from relatively complex low-level behavior, and the emergence of sophisticated high-level behavior from relatively simple low-level behavior; they are often found nested in the same system. Concerning the emergence of simplicity, this essay examines Herbert Simon's explanation from near-decomposability and a stochastic explanation that generalizes the approach of statistical physics. A more (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Conceptual Engineering Can Learn from the History of Philosophy of Science: Healthy Externalism and Metasemantic Plasticity.Matteo De Benedetto - 2024 - Hopos: The Journal of the International Society for the History of Philosophy of Science 14 (1):1-24.
    Conceptual engineering wants analytic philosophy to be centered around the assessment and improvement of philosophical concepts. But contemporary debates about conceptual engineering do not engage much with the vast literature on conceptual change that exists in philosophy of science. In this article, I argue that an adequate appreciation of the history of philosophy of science can contribute to discussions about conceptual engineering. Specifically, I show that the evolution of debates over scientific conceptual change arguably demonstrates that, contrary to what is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Nature of Appearance in Kant’s Transcendentalism: A Seman- tico-Cognitive Analysis.Sergey L. Katrechko - 2018 - Kantian Journal 37 (3):41-55.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Taming conceptual wanderings: Wilson-Structuralism.Matteo De Benedetto - 2021 - Synthese 199 (5-6):13225-13246.
    Mark Wilson presents a highly original account of conceptual behavior that challenges many received views about concepts in analytic philosophy. Few attempts have been made to rationally reconstruct Wilson’s framework of patches and facades within a precise semantic framework. I will show how a modified version of the structuralist framework offers a semantic reconstruction of scientific theories capable of modeling Wilson’s ideas about conceptual behavior. Specifically, I will argue that Theory-Elements and a modified version of Theory-Nets explicate respectively Wilson’s patches (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The modular structure of physical theories.Olivier Darrigol - 2008 - Synthese 162 (2):195 - 223.
    Any advanced theory of physics contains modules defined as essential components that are themselves theories with different domains of application. Different kinds of modules can be distinguished according to the way in which they fit in the symbolic and interpretive apparatus of a theory. The number and kind of the modules of a given theory vary as the theory evolves in time. The relative stability of modules and the variability of their insertion in other theories play a vital role in (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Geometry, mechanics, and experience: a historico-philosophical musing.Olivier Darrigol - 2022 - European Journal for Philosophy of Science 12 (4):1-36.
    Euclidean geometry, statics, and classical mechanics, being in some sense the simplest physical theories based on a full-fledged mathematical apparatus, are well suited to a historico-philosophical analysis of the way in which a physical theory differs from a purely mathematical theory. Through a series of examples including Newton’s Principia and later forms of mechanics, we will identify the interpretive substructure that connects the mathematical apparatus of the theory to the world of experience. This substructure includes models of experiments, models of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Yes, More Decoherence: A Reply to Critics.Elise M. Crull - 2017 - Foundations of Physics 47 (11):1428-1463.
    Recently I published an article in this journal entitled “Less interpretation and more decoherence in quantum gravity and inflationary cosmology” :1019–1045, 2015). This article generated responses from three pairs of authors: Vassallo and Esfeld :1533–1536, 2015), Okon and Sudarsky :852–879, 2016) and Fortin and Lombardi. In what follows, I reply to the criticisms raised by these authors.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Philosophy of Physics.Elise M. Crull - 2013 - Analysis 73 (4):771-784.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconciling Ontic Structural Realism and Ontological Emergence.João L. Cordovil, Gil C. Santos & John Symons - 2023 - Foundations of Science 28 (1):1-20.
    While ontic structural realism (OSR) has been a central topic in contemporary philosophy of science, the relation between OSR and the concept of emergence has received little attention. We will argue that OSR is fully compatible with emergentism. The denial of ontological emergence requires additional assumptions that, strictly speaking, go beyond OSR. We call these _physicalist closure assumptions._ We will explain these assumptions and show that they are independent of the central commitments of OSR and inconsistent with its core goals. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The ontological commitments of inconsistent theories.Mark Colyvan - 2008 - Philosophical Studies 141 (1):115 - 123.
    In this paper I present an argument for belief in inconsistent objects. The argument relies on a particular, plausible version of scientific realism, and the fact that often our best scientific theories are inconsistent. It is not clear what to make of this argument. Is it a reductio of the version of scientific realism under consideration? If it is, what are the alternatives? Should we just accept the conclusion? I will argue (rather tentatively and suitably qualified) for a positive answer (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Non-equilibrium thermodynamics and the free energy principle in biology.Matteo Colombo & Patricia Palacios - 2021 - Biology and Philosophy 36 (5):1-26.
    According to the free energy principle, life is an “inevitable and emergent property of any random dynamical system at non-equilibrium steady state that possesses a Markov blanket” :20130475, 2013). Formulating a principle for the life sciences in terms of concepts from statistical physics, such as random dynamical system, non-equilibrium steady state and ergodicity, places substantial constraints on the theoretical and empirical study of biological systems. Thus far, however, the physics foundations of the free energy principle have received hardly any attention. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience.M. Chirimuuta - 2014 - Synthese 191 (2):127-153.
    In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation in neuroscience to the new territory of computational neuroscience. He presents the model to mechanism mapping (3M) criterion as a condition for a model’s explanatory adequacy. This mechanistic approach is intended to replace earlier accounts which posited a level of computational analysis conceived as distinct and autonomous from underlying mechanistic details. In this paper I discuss work in (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Modeling Cracks and Cracking Models: Structures, Mechanisms, Boundary Conditions, Constraints, Inconsistencies and The Proper Domains of Natural Laws.Jordi Cat - 2005 - Synthese 146 (3):447-487.
    The emphasis on models hasn’t completely eliminated laws from scientific discourse and philosophical discussion. Instead, I want to argue that much of physics lies beyond the strict domain of laws. I shall argue that in important cases the physics, or physical understanding, does not lie either in laws or in their properties, such as universality, consistency and symmetry. I shall argue that the domain of application commonly attributed to laws is too narrow. That is, laws can still play an important, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Less is Different: Emergence and Reduction Reconciled. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):1065-1135.
    This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction.In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each (...)
    Download  
     
    Export citation  
     
    Bookmark   148 citations  
  • Emergence, Reduction and Supervenience: A Varied Landscape. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):920-959.
    This is one of two papers about emergence, reduction and supervenience. It expounds these notions and analyses the general relations between them. The companion paper analyses the situation in physics, especially limiting relations between physical theories. I shall take emergence as behaviour that is novel and robust relative to some comparison class. I shall take reduction as deduction using appropriate auxiliary definitions. And I shall take supervenience as a weakening of reduction, viz. to allow infinitely long definitions. The overall claim (...)
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Classifying and characterizing active materials.Julia R. S. Bursten - 2020 - Synthese 199 (1):2007-2026.
    This article examines the distinction between active matter and active materials, and it offers foundational remarks toward a system of classification for active materials. Active matter is typically identified as matter that exhibits two characteristic features: self-propelling parts, and coherent dynamical activity among the parts. These features are exhibited across a wide range of organic and inorganic materials, and they are jointly sufficient for classifying matter as active. Recently, the term “active materials” has entered scientific use as a complement, supplement, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Models of Reduction.Otávio Bueno - 2009 - Principia: An International Journal of Epistemology 13 (3):269-282.
    . In this paper, I examine three models of reduction. The first, and the most restrictive, is the model developed by Ernest Nagel as part of the logical empiricist program. The second, articulated by Jerry Fodor, is significantly broader, but it seems unable to make sense of a salient feature of scientific practice. The third, and the most lenient, model is developed within Newton da Costa and Steven French’s partial structures approach. I argue that the third model preserves the benefits (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can Mathematics Explain Physical Phenomena?Otávio Bueno & Steven French - 2012 - British Journal for the Philosophy of Science 63 (1):85-113.
    Batterman raises a number of concerns for the inferential conception of the applicability of mathematics advocated by Bueno and Colyvan. Here, we distinguish the various concerns, and indicate how they can be assuaged by paying attention to the nature of the mappings involved and emphasizing the significance of interpretation in this context. We also indicate how this conception can accommodate the examples that Batterman draws upon in his critique. Our conclusion is that ‘asymptotic reasoning’ can be straightforwardly accommodated within the (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • An Inferential Conception of the Application of Mathematics.Otávio Bueno & Mark Colyvan - 2011 - Noûs 45 (2):345-374.
    A number of people have recently argued for a structural approach to accounting for the applications of mathematics. Such an approach has been called "the mapping account". According to this view, the applicability of mathematics is fully accounted for by appreciating the relevant structural similarities between the empirical system under study and the mathematics used in the investigation ofthat system. This account of applications requires the truth of applied mathematical assertions, but it does not require the existence of mathematical objects. (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Should Explanations Omit the Details?Darren Bradley - 2020 - British Journal for the Philosophy of Science 71 (3):827-853.
    There is a widely shared belief that the higher-level sciences can provide better explanations than lower-level sciences. But there is little agreement about exactly why this is so. It is often suggested that higher-level explanations are better because they omit details. I will argue instead that the preference for higher-level explanations is just a special case of our general preference for informative, logically strong, beliefs. I argue that our preference for informative beliefs entirely accounts for why higher-level explanations are sometimes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I object that this inference depends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Contextual Emergence in the Description of Properties.Robert C. Bishop & Harald Atmanspacher - 2006 - Foundations of Physics 36 (12):1753-1777.
    The role of contingent contexts in formulating relations between properties of systems at different descriptive levels is addressed. Based on the distinction between necessary and sufficient conditions for interlevel relations, a comprehensive classification of such relations is proposed, providing a transparent conceptual framework for discussing particular versions of reduction, emergence, and supervenience. One of these versions, contextual emergence, is demonstrated using two physical examples: molecular structure and chirality, and thermal equilibrium and temperature. The concept of stability is emphasized as a (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Philosophical and scientific perspectives on emergence.Hugues Bersini, Pasquale Stano, Pier Luigi Luisi & Mark A. Bedau - 2012 - Synthese 185 (2):165-169.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Platonic Theory of Truthmaking.Scott Berman - 2013 - Metaphysica 14 (1):109-125.
    A Platonic explanation of non-modal and modal truths is explained and defended using non-spatiotemporal entities as their truthmakers. It is argued, further, that this theory is parsimonious, naturalistic, and ontologically serious. These features should commend the view to a wide swath of philosophers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structural Realism, Metaphysical Unification, and the Ontology and Epistemology of Patterns.Majid Davoody Beni - 2017 - International Studies in the Philosophy of Science 31 (3):285-300.
    ABSTRACTLadyman and Ross’s account of the metaphysical component of ontic structural realism was associated with a unificationist view of the connection between fundamental physics and special sciences. The aim of the present article is to assess the sense of unification that is at issue in Ladyman and Ross’s definition of metaphysics. Given the ontic core of Ladyman and Ross’s version of structural realism, it should be assumed that the unifying endeavour is worthwhile only if the connective links that underpin unification (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is weak emergence just in the mind?Mark A. Bedau - 2008 - Minds and Machines 18 (4):443-459.
    Weak emergence is the view that a system’s macro properties can be explained by its micro properties but only in an especially complicated way. This paper explains a version of weak emergence based on the notion of explanatory incompressibility and “crawling the causal web.” Then it examines three reasons why weak emergence might be thought to be just in the mind. The first reason is based on contrasting mere epistemological emergence with a form of ontological emergence that involves irreducible downward (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • When good theories make bad predictions.Vadim Batitsky & Zoltan Domotor - 2007 - Synthese 157 (1):79 - 103.
    Chaos-related obstructions to predictability have been used to challenge accounts of theory validation based on the agreement between theoretical predictions and experimental data. These challenges are incomplete in two respects: they do not show that chaotic regimes are unpredictable in principle and, as a result, that there is something conceptually wrong with idealized expectations of correct predictions from acceptable theories, and they do not explore whether chaos-induced predictive failures of deterministic models can be remedied by stochastic modeling. In this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The inconsistency of Physics.Robert W. Batterman - 2014 - Synthese 191 (13):2973-2992.
    This paper discusses a conception of physics as a collection of theories that, from a logical point of view, is inconsistent. It is argued that this logical conception of the relations between physical theories is too crude. Mathematical subtleties allow for a much more nuanced and sophisticated understanding of the relations between different physical theories.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Response to Belot’s “Whose Devil? Which Details?‘.Robert W. Batterman - 2005 - Philosophy of Science 72 (1):154-163.
    I respond to Belot's argument and defend the view that sometimes `fundamental theories' are explanatorily inadequate and need to be supplemented with certain aspects of less fundamental `theories emeritus'.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Steel and bone: mesoscale modeling and middle-out strategies in physics and biology.Robert W. Batterman & Sara Green - 2020 - Synthese 199 (1-2):1159-1184.
    Mesoscale modeling is often considered merely as a practical strategy used when information on lower-scale details is lacking, or when there is a need to make models cognitively or computationally tractable. Without dismissing the importance of practical constraints for modeling choices, we argue that mesoscale models should not just be considered as abbreviations or placeholders for more “complete” models. Because many systems exhibit different behaviors at various spatial and temporal scales, bottom-up approaches are almost always doomed to fail. Mesoscale models (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • On the specialness of special functions (the nonrandom effusions of the divine mathematician).Robert W. Batterman - 2007 - British Journal for the Philosophy of Science 58 (2):263 - 286.
    This article attempts to address the problem of the applicability of mathematics in physics by considering the (narrower) question of what make the so-called special functions of mathematical physics special. It surveys a number of answers to this question and argues that neither simple pragmatic answers, nor purely mathematical classificatory schemes are sufficient. What is required is some connection between the world and the way investigators are forced to represent the world.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Emergence, Singularities, and Symmetry Breaking.Robert W. Batterman - 2011 - Foundations of Physics 41 (6):1031-1050.
    This paper looks at emergence in physical theories and argues that an appropriate way to understand socalled “emergent protectorates” is via the explanatory apparatus of the renormalization group. It is argued that mathematical singularities play a crucial role in our understanding of at least some well-defined emergent features of the world.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Asymptotics and the role of minimal models.Robert W. Batterman - 2002 - British Journal for the Philosophy of Science 53 (1):21-38.
    A traditional view of mathematical modeling holds, roughly, that the more details of the phenomenon being modeled that are represented in the model, the better the model is. This paper argues that often times this ‘details is better’ approach is misguided. One ought, in certain circumstances, to search for an exactly solvable minimal model—one which is, essentially, a caricature of the physics of the phenomenon in question.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Satan, Saint Peter and Saint Petersburg: Decision theory and discontinuity at infinity.Paul Bartha, John Barker & Alan Hájek - 2014 - Synthese 191 (4):629-660.
    We examine a distinctive kind of problem for decision theory, involving what we call discontinuity at infinity. Roughly, it arises when an infinite sequence of choices, each apparently sanctioned by plausible principles, converges to a ‘limit choice’ whose utility is much lower than the limit approached by the utilities of the choices in the sequence. We give examples of this phenomenon, focusing on Arntzenius et al.’s Satan’s apple, and give a general characterization of it. In these examples, repeated dominance reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Indispensability, causation and explanation.Sorin Bangu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):219-232.
    When considering mathematical realism, some scientific realists reject it, and express sympathy for the opposite view, mathematical nominalism; moreover, many justify this option by invoking the causal inertness of mathematical objects. The main aim of this note is to show that the scientific realists’ endorsement of this causal mathematical nominalism is in tension with another position some of them also accept, the doctrine of methodological naturalism. By highlighting this conflict, I intend to tip the balance in favor of a rival (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Discontinuities and singularities, data and phenomena: for Referentialism.Sorin Bangu - 2019 - Synthese 196 (5):1919-1937.
    The paper rebuts a currently popular criticism against a certain take on the referential role of discontinuities and singularities in the physics of first-order phase transitions. It also elaborates on a proposal I made previously on how to understand this role within the framework provided by the distinction between data and phenomena.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Emergence in effective field theories.Jonathan Bain - 2013 - European Journal for Philosophy of Science 3 (3):257-273.
    This essay considers the extent to which a concept of emergence can be associated with Effective Field Theories (EFTs). I suggest that such a concept can be characterized by microphysicalism and novelty underwritten by the elimination of degrees of freedom from a high-energy theory, and argue that this makes emergence in EFTs distinct from other concepts of emergence in physics that have appeared in the recent philosophical literature.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Complements, not competitors: causal and mathematical explanations.Holly Andersen - 2017 - British Journal for the Philosophy of Science 69 (2):485-508.
    A finer-grained delineation of a given explanandum reveals a nexus of closely related causal and non- causal explanations, complementing one another in ways that yield further explanatory traction on the phenomenon in question. By taking a narrower construal of what counts as a causal explanation, a new class of distinctively mathematical explanations pops into focus; Lange’s characterization of distinctively mathematical explanations can be extended to cover these. This new class of distinctively mathematical explanations is illustrated with the Lotka-Volterra equations. There (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations