Switch to: References

Add citations

You must login to add citations.
  1. Multilevel Modeling and the Explanatory Autonomy of Psychology.Wei Fang - 2020 - Philosophy of the Social Sciences 50 (3):175-194.
    This article argues for the explanatory autonomy of psychology drawing on cases from the multilevel modeling practice. This is done by considering a multilevel linear model in personality and social psychology, and discussing its philosophical implications for the reductionism debate in philosophy of psychology. I argue that this practice challenges the reductionist position in philosophy of psychology, and supports the explanatory autonomy of psychology.
    Download  
     
    Export citation  
     
    Bookmark  
  • Explaining the behaviour of random ecological networks: the stability of the microbiome as a case of integrative pluralism.Roger Deulofeu, Javier Suárez & Alberto Pérez-Cervera - 2019 - Synthese 198 (3):2003-2025.
    Explaining the behaviour of ecosystems is one of the key challenges for the biological sciences. Since 2000, new-mechanicism has been the main model to account for the nature of scientific explanation in biology. The universality of the new-mechanist view in biology has been however put into question due to the existence of explanations that account for some biological phenomena in terms of their mathematical properties (mathematical explanations). Supporters of mathematical explanation have argued that the explanation of the behaviour of ecosystems (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Rethinking Causality in Biological and Neural Mechanisms: Constraints and Control.Jason Winning & William Bechtel - 2018 - Minds and Machines 28 (2).
    Existing accounts of mechanistic causation are not suited for understanding causation in biological and neural mechanisms because they do not have the resources to capture the unique causal structure of control heterarchies. In this paper, we provide a new account on which the causal powers of mechanisms are grounded by time-dependent, variable constraints. Constraints can also serve as a key bridge concept between the mechanistic approach to explanation and underappreciated work in theoretical biology that sheds light on how biological systems (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Transactive Memory Systems: A Mechanistic Analysis of Emergent Group Memory.Georg Theiner - 2013 - Review of Philosophy and Psychology 4 (1):65-89.
    Wegner, Giuliano, and Hertel (1985) defined the notion of a transactive memory system (TMS) as a group level memory system that “involves the operation of the memory systems of the individuals and the processes of communication that occur within the group (p. 191). Those processes are the collaborative procedures (“transactions”) by which groups encode, store, and retrieve information that is distributed among their members. Over the past 25+ years, the conception of a TMS has progressively garnered an increased interest among (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Neuroepigenetics in Philosophical Focus: A Critical Analysis of the Philosophy of Mechanisms.Antonella Tramacere & John Bickle - 2024 - Biological Theory 19 (1):56-71.
    Epigenetics investigates the dynamics of gene expression in various cells, and the signals from the internal and external environment affecting these dynamics. Neuroepigenetics extends this research into neurons and glia cells. Environmental-induced changes in gene expression are not only associated with the emerging structure and function of the nervous system during ontogeny, but are also fundamental to the wiring of neural circuitries responsible for learning and memory. Yet philosophers of science and neuroscience have so far paid little attention to these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mixed-Effects Modeling and Nonreductive Explanation.Wei Fang - unknown - Philosophy of Science 86 (5):882-894.
    This essay considers a mixed-effects modeling practice and its implications for the philosophical debate surrounding reductive explanation. Mixed-effects modeling is a species of the multilevel modeling practice, where a single model incorporates simultaneously two levels of explanatory variables to explain a phenomenon of interest. I argue that this practice makes the position of explanatory reductionism held by many philosophers untenable because it violates two central tenets of explanatory reductionism: single-level preference and lower-level obsession.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructing a Philosophy of Science of Cognitive Science.William Bechtel - 2009 - Topics in Cognitive Science 1 (3):548-569.
    Philosophy of science is positioned to make distinctive contributions to cognitive science by providing perspective on its conceptual foundations and by advancing normative recommendations. The philosophy of science I embrace is naturalistic in that it is grounded in the study of actual science. Focusing on explanation, I describe the recent development of a mechanistic philosophy of science from which I draw three normative consequences for cognitive science. First, insofar as cognitive mechanisms are information‐processing mechanisms, cognitive science needs an account of (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation.Ingo Brigandt - 2015 - In P.-A. Braillard & C. Malaterre (eds.), Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Springer. pp. 135-173.
    Evolutionary developmental biology (evo-devo) is considered a ‘mechanistic science,’ in that it causally explains morphological evolution in terms of changes in developmental mechanisms. Evo-devo is also an interdisciplinary and integrative approach, as its explanations use contributions from many fields and pertain to different levels of organismal organization. Philosophical accounts of mechanistic explanation are currently highly prominent, and have been particularly able to capture the integrative nature of multifield and multilevel explanations. However, I argue that evo-devo demonstrates the need for a (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • What is a mechanism? Thinking about mechanisms across the sciences.Phyllis McKay Illari & Jon Williamson - 2012 - European Journal for Philosophy of Science 2 (1):119-135.
    After a decade of intense debate about mechanisms, there is still no consensus characterization. In this paper we argue for a characterization that applies widely to mechanisms across the sciences. We examine and defend our disagreements with the major current contenders for characterizations of mechanisms. Ultimately, we indicate that the major contenders can all sign up to our characterization.
    Download  
     
    Export citation  
     
    Bookmark   193 citations  
  • Cancer and the goals of integration.Anya Plutynski - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):466-476.
    Cancer is not one, but many diseases, and each is a product of a variety of causes acting at distinct temporal and spatial scales, or ‘‘levels’’ in the biological hierarchy. In part because of this diversity of cancer types and causes, there has been a diversity of models, hypotheses, and explanations of carcinogenesis. However, there is one model of carcinogenesis that seems to have survived the diversification of cancer types: the multi-stage model of carcinogenesis. This paper examines the history of (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering.Tarja Knuuttila & Andrea Loettgers - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):158-169.
    Synthetic biology is often understood in terms of the pursuit for well-characterized biological parts to create synthetic wholes. Accordingly, it has typically been conceived of as an engineering dominated and application oriented field. We argue that the relationship of synthetic biology to engineering is far more nuanced than that and involves a sophisticated epistemic dimension, as shown by the recent practice of synthetic modeling. Synthetic models are engineered genetic networks that are implanted in a natural cell environment. Their construction is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.
    The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models—which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Explanation in Biology: Reduction, Pluralism, and Explanatory Aims.Ingo Brigandt - 2011 - Science & Education 22 (1):69-91.
    This essay analyzes and develops recent views about explanation in biology. Philosophers of biology have parted with the received deductive-nomological model of scientific explanation primarily by attempting to capture actual biological theorizing and practice. This includes an endorsement of different kinds of explanation (e.g., mathematical and causal-mechanistic), a joint study of discovery and explanation, and an abandonment of models of theory reduction in favor of accounts of explanatory reduction. Of particular current interest are philosophical accounts of complex explanations that appeal (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Looking down, around, and up: Mechanistic explanation in psychology.William Bechtel - 2009 - Philosophical Psychology 22 (5):543-564.
    Accounts of mechanistic explanation have emphasized the importance of looking down—decomposing a mechanism into its parts and operations. Using research on visual processing as an exemplar, I illustrate how productive such research has been. But once multiple components of a mechanism have been identified, researchers also need to figure out how it is organized—they must look around and determine how to recompose the mechanism. Although researchers often begin by trying to recompose the mechanism in terms of sequential operations, they frequently (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Philosophy of Molecular Biology.Ingo Brigandt - 2018 - eLS: Encyclopedia of Life Sciences.
    Ongoing empirical discoveries in molecular biology have generated novel conceptual challenges and perspectives. Philosophers of biology have reacted to these trends when investigating the practice of molecular biology and contributed to scientific debates on methodological and conceptual matters. This article reviews some major philosophical issues in molecular biology. First, philosophical accounts of mechanistic explanation yield a notion of explanation in the context of molecular biology that does not have to rely on laws of nature and comports well with molecular discovery. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation of Molecular Processes without Tracking Mechanism Operation.Ingo Brigandt - 2018 - Philosophy of Science 85 (5):984-997.
    Philosophical discussions of systems biology have enriched the notion of mechanistic explanation by pointing to the role of mathematical modeling. However, such accounts still focus on explanation in terms of tracking a mechanism's operation across time (by means of mental or computational simulation). My contention is that there are explanations of molecular systems where the explanatory understanding does not consist in tracking a mechanism's operation and productive continuity. I make this case by a discussion of bifurcation analysis in dynamical systems, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences.P.-A. Braillard and C. Malaterre (ed.) - 2015 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Multilevel Research Strategies and Biological Systems.Maureen A. O’Malley, Ingo Brigandt, Alan C. Love, John W. Crawford, Jack A. Gilbert, Rob Knight, Sandra D. Mitchell & Forest Rohwer - 2014 - Philosophy of Science 81 (5):811-828.
    Multilevel research strategies characterize contemporary molecular inquiry into biological systems. We outline conceptual, methodological, and explanatory dimensions of these multilevel strategies in microbial ecology, systems biology, protein research, and developmental biology. This review of emerging lines of inquiry in these fields suggests that multilevel research in molecular life sciences has significant implications for philosophical understandings of explanation, modeling, and representation.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Models, robustness, and non-causal explanation: a foray into cognitive science and biology.Elizabeth Irvine - 2015 - Synthese 192 (12):3943-3959.
    This paper is aimed at identifying how a model’s explanatory power is constructed and identified, particularly in the practice of template-based modeling (Humphreys, Philos Sci 69:1–11, 2002; Extending ourselves: computational science, empiricism, and scientific method, 2004), and what kinds of explanations models constructed in this way can provide. In particular, this paper offers an account of non-causal structural explanation that forms an alternative to causal–mechanical accounts of model explanation that are currently popular in philosophy of biology and cognitive science. Clearly, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Properties of Life: Toward a Coherent Understanding of the Organism.Bernd Rosslenbroich - 2016 - Acta Biotheoretica 64 (3):277-307.
    The question of specific properties of life compared to nonliving things accompanied biology throughout its history. At times this question generated major controversies with largely diverging opinions. Basically, mechanistic thinkers, who tried to understand organismic functions in terms of nonliving machines, were opposed by those who tried to describe specific properties or even special forces being active within living entities. As this question included the human body, these controversies always have been of special relevance to our self-image and also touched (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extended Mechanistic Explanations: Expanding the Current Mechanistic Conception to Include More Complex Biological Systems.Sarah M. Roe & Bert Baumgaertner - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (4):517-534.
    Mechanistic accounts of explanation have recently found popularity within philosophy of science. Presently, we introduce the idea of an extended mechanistic explanation, which makes explicit room for the role of environment in explanation. After delineating Craver and Bechtel’s account, we argue this suggestion is not sufficiently robust when we take seriously the mechanistic environment and modeling practices involved in studying contemporary complex biological systems. Our goal is to extend the already profitable mechanistic picture by pointing out the importance of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Special Issue: Philosophical Considerations in the Teaching of Biology. Part I, Philosophy of Biology and Biological Explanation.Kostas Kampourakis (ed.) - 2013 - Springer (Science & Education).
    Download  
     
    Export citation  
     
    Bookmark