Switch to: References

Add citations

You must login to add citations.
  1. Quantum Mechanics and Metaphysical Indeterminacy.George Darby - 2010 - Australasian Journal of Philosophy 88 (2):227-245.
    There has been recent interest in formulating theories of non-representational indeterminacy. The aim of this paper is to clarify the relevance of quantum mechanics to this project. Quantum-mechanical examples of vague objects have been offered by various authors, displaying indeterminate identity, in the face of the famous Evans argument that such an idea is incoherent. It has also been suggested that the quantum-mechanical treatment of state-dependent properties exhibits metaphysical indeterminacy. In both cases it is important to consider the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Quantum monism: an assessment.Claudio Calosi - 2018 - Philosophical Studies 175 (12):3217-3236.
    Monism is roughly the view that there is only one fundamental entity. One of the most powerful argument in its favor comes from quantum mechanics. Extant discussions of quantum monism are framed independently of any interpretation of the quantum theory. In contrast, this paper argues that matters of interpretation play a crucial role when assessing the viability of monism in the quantum realm. I consider four different interpretations: modal interpretations, Bohmian mechanics, many worlds interpretations, and wavefunction realism. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Time Symmetric Quantum Mechanics and Causal Classical Physics?Fritz W. Bopp - 2017 - Foundations of Physics 47 (4):490-504.
    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual “near future” macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Everett's “Many-Worlds” proposal.Brett Maynard Bevers - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):3-12.
    Hugh Everett III proposed that a quantum measurement can be treated as an interaction that correlates microscopic and macroscopic systems—particularly when the experimenter herself is included among those macroscopic systems. It has been difficult, however, to determine precisely what this proposal amounts to. Almost without exception, commentators have held that there are ambiguities in Everett’s theory of measurement that result from significant—even embarrassing—omissions. In the present paper, we resist the conclusion that Everett’s proposal is incomplete, and we develop a close (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The curious case of spacetime emergence.Sam Baron - 2019 - Philosophical Studies 177 (8):2207-2226.
    Work in quantum gravity suggests that spacetime is not fundamental. Rather, spacetime emerges from an underlying, non-spatiotemporal reality. After clarifying the type of emergence at issue, I argue that standard conceptions of emergence available in metaphysics won’t work for the emergence of spacetime. I go on to consider spacetime functionalism as a way to make sense of spacetime emergence. I argue that a functionalist approach to spacetime modelled on mental state functionalism is not a viable alternative to the standard conception (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Measurement outcomes and probability in Everettian quantum mechanics.David Baker - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):153-169.
    The decision-theoretic account of probability in the Everett or many-worlds interpretation, advanced by David Deutsch and David Wallace, is shown to be circular. Talk of probability in Everett presumes the existence of a preferred basis to identify measurement outcomes for the probabilities to range over. But the existence of a preferred basis can only be established by the process of decoherence, which is itself probabilistic.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • General Covariance, Diffeomorphism Invariance, and Background Independence in 5 Dimensions.Antonio Vassallo - 2015 - In Tomasz Bigaj & Christian Wüthrich (eds.), Metaphysics in Contemporary Physics. Boston: Brill | Rodopi.
    The paper considers the "GR-desideratum", that is, the way general relativity implements general covariance, diffeomorphism invariance, and background independence. Two cases are discussed where 5-dimensional generalizations of general relativity run into interpretational troubles when the GR-desideratum is forced upon them. It is shown how the conceptual problems dissolve when such a desideratum is relaxed. In the end, it is suggested that a similar strategy might mitigate some major issues such as the problem of time or the embedding of quantum non-locality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Assessment Sensitivity: Relative Truth and its Applications.John MacFarlane - 2014 - Oxford: Oxford University Press.
    John MacFarlane explores how we might make sense of the idea that truth is relative. He provides new, satisfying accounts of parts of our thought and talk that have resisted traditional methods of analysis, including what we mean when we talk about what is tasty, what we know, what will happen, what might be the case, and what we ought to do.
    Download  
     
    Export citation  
     
    Bookmark   429 citations  
  • The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Bloch's paradox and the nonlocality of chance.Brian A. Woodcock - 2007 - International Studies in the Philosophy of Science 21 (2):137 – 156.
    I show how an almost exclusive focus on the simplest case - the case of a single particle - along with the commonplace conception of the single-particle wave function as a scalar field on spacetime contributed to the perception, first brought to light by I. Bloch, that there existed a contradiction between quantum theory with instantaneous state collapses and special relativity. The incompatibility is merely apparent since treating wave-function values as hypersurface dependent avoids the contradiction. After clarifying confusions which fueled (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum probability from subjective likelihood: Improving on Deutsch's proof of the probability rule.David Wallace - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):311-332.
    I present a proof of the quantum probability rule from decision-theoretic assumptions, in the context of the Everett interpretation. The basic ideas behind the proof are those presented in Deutsch's recent proof of the probability rule, but the proof is simpler and proceeds from weaker decision-theoretic assumptions. This makes it easier to discuss the conceptual ideas involved in the proof, and to show that they are defensible.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   128 citations  
  • The quantum-like approach to modeling classical rationality violations: an introduction.Franco Vaio - 2019 - Mind and Society 18 (1):105-123.
    Psychological empirical research has shown that human choice behavior often violates the assumptions of classical rational choice models. In the last few decades a new research field has emerged which aims to account for the observed choice behavior by resorting to the concepts and mathematical techniques developed in the realm of quantum physics, such as the “mental state vector” defined in a Hilbert space and the interference of quantum probability. This article is a short introduction to the quantum-like approach to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Radical Pluralism.Aaron Segal - 2020 - Noûs 54 (1):24-53.
    Humean Supervenience is the view that (a) there are a plurality of fundamental beings, (b) there are no inexplicable constraints on modal space, and hence the fundamental nature of each such being is independent of those of all the rest and of the fundamental relations in which it stands to the rest, (c) the fundamental beings stand in no fundamental causal or nomic relations, and hence (d) the distribution of any causal or nomic relations in which they do stand globally (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Van Frasssen, Everett, and the critique of the copenhagem view of measurement.Stefano Osnaghi - 2008 - Principia: An International Journal of Epistemology 12 (2):155-176.
    Bas van Fraassen advocates a “Copenhagen variant” of the modal interpretation of quantum mechanics. However, he believes that the Copenhagen approach to measurement is not fully satisfactory, since it seems to rule out the possibility of providing a physical account of the observation process. This was also what John Wheeler had in mind when, in the mid-1950’s, he sponsored the “relative state” formulation proposed by his student Hugh Everett. Wheeler, who considered himself an orthodox Bohrian, tried to convince Bohr to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relativistic quantum becoming.Wayne C. Myrvold - 2003 - British Journal for the Philosophy of Science 54 (3):475-500.
    In a recent paper, David Albert has suggested that no quantum theory can yield a description of the world unfolding in Minkowski spacetime. This conclusion is premature; a natural extension of Stein's notion of becoming in Minkowski spacetime to accommodate the demands of quantum nonseparability yields such an account, an account that is in accord with a proposal which was made by Aharonov and Albert but which is dismissed by Albert as a ‘mere trick’. The nature of such an account (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Quantum Mechanics in a New Light.Ulrich J. Mohrhoff - 2017 - Foundations of Science 22 (3):517-537.
    Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata, and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the manifested world (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Histories in quantum mechanics: distinguishing between formalism and interpretation.Marcelo Losada & Olimpia Lombardi - 2018 - European Journal for Philosophy of Science 8 (3):367-394.
    In spite of being a well articulated proposal, the theory of quantum histories, in its different versions, suffers from certain difficulties that have been pointed out in the literature. Nevertheless, two facets of the proposal have not been sufficiently stressed. On the one hand, it is a non-collapse formalism that should be technically appropriate to supply descriptions based on quantum properties at different times. On the other hand, it intends to provide an interpretation of quantum mechanics that solves the traditional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conspiracy theories of quantum mechanics.Peter J. Lewis - 2006 - British Journal for the Philosophy of Science 57 (2):359-381.
    It has long been recognized that a local hidden variable theory of quantum mechanics can in principle be constructed, provided one is willing to countenance pre-measurement correlations between the properties of measured systems and measuring devices. However, this ‘conspiratorial’ approach is typically dismissed out of hand. In this article I examine the justification for dismissing conspiracy theories of quantum mechanics. I consider the existing arguments against such theories, and find them to be less than conclusive. I suggest a more powerful (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • An impossibility theorem for parameter independent hidden variable theories.Gijs Leegwater - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54:18-34.
    Recently, Roger Colbeck and Renato Renner have claimed that ‘[n]o extension of quantum theory can have improved predictive power'. If correct, this is a spectacular impossibility theorem for hidden variable theories, which is more general than the theorems of Bell and Leggett. Also, C&R have used their claim in attempt to prove that a system's quantum-mechanical wave function is in a one-to-one correspondence with its ‘ontic' state. C&R's claim essentially means that in any hidden variable theory that is compatible with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can Physics Coherently Deny the Reality of Time?Richard Healey - 2002 - Royal Institute of Philosophy Supplement 50:293-.
    The conceptual and technical difficulties involved in creating a quantum theory of gravity have led some physicists to question, and even in some cases to deny, the reality of time. More surprisingly, this denial has found a sympathetic audience among certain philosophers of physics. What should we make of these wild ideas? Does it even make sense to deny the reality of time? In fact physical science has been chipping away at common sense aspects of time ever since its inception. (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • The measurement problem revisited.Shan Gao - unknown
    It has been realized that in order to solve the measurement problem, the physical state representing the measurement result is required to be also the physical state on which the mental state of an observer supervenes. This introduces an additional restriction on the solutions to the measurement problem. In this paper, I give a new formulation of the measurement problem which lays more stress on psychophysical connection, and analyze whether Everett's theory, Bohm's theory and dynamical collapse theories can satisfy the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Emerging (In)Determinacy.Benjamin Eva - 2018 - Thought: A Journal of Philosophy 7 (1):31-39.
    In recent years, a number of authors have defended the coherence and philosophical utility of the notion of metaphysical indeterminacy. Concurrently, the idea that reality can be stratified into more or less fundamental ‘levels’ has gained significant traction in the literature. Here, I examine the relationship between these two notions. Specifically, I consider the question of what metaphysical determinacy at one level of reality tells us about the possibility of metaphysical determinacy at other more or less fundamental levels. Towards this (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ontic structural realism and the interpretation of quantum mechanics.Michael Esfeld - 2013 - European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Propensities in quantum mechanics.Mauricio Suárez - 2006 - Centre for Philosophy of Natural and Social Science.
    I review five explicit attempts throughout the history of quantum mechanics to invoke dispositional notions in order to solve the quantum paradoxes, namely: Margenau’s latencies, Heisenberg’s potentialities, Popper’s propensity interpretation of probability, Nick Maxwell’s propensitons, and the recent selective propensities interpretation of quantum mechanics. I raise difficulties and challenges for all of them, but conclude that the selective propensities approach nicely encompasses the virtues of its predecessors. I elaborate on some of the properties of the type of propensities that I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dispositions, relational properties and the quantum world.Mauro Dorato - 2017 - In Maximilien Kistler (ed.), Dispositions and Causal Powers, Routledge, 2017,. London: Routledge. pp. pp.249-270..
    In this paper I examine the role of dispositional properties in the most frequently discussed interpretations of non-relativistic quantum mechanics. After offering some motivation for this project, I briefly characterize the distinction between non-dispositional and dispositional properties in the context of quantum mechanics by suggesting a necessary condition for dispositionality – namely contextuality – and, consequently, a sufficient condition for non-dispositionality, namely non-contextuality. Having made sure that the distinction is conceptually sound, I then analyze the plausibility of the widespread, monistic (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Modal metaphysics and the Everett interpretation (BA thesis).Alastair Wilson - 2005 - Dissertation, Oxford
    Recent work on probability in the Everett interpretation of quantum mechanics yields a decision-theoretic derivation of David Lewis’ Principal Principle, and hence a general metaphysical theory of probability; part 1 is a discussion of this remarkable result. I defend the claim that the ‘subjective uncertainty’ principle is required for the derivation to succeed, arguing that it amounts to a theoretical identification of chance. In part 2, I generalize this account, and suggest that the Everett interpretation, in combination with a plausible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Worlds of Quantum Theory.Jeremy Butterfield - 2001 - In R. J. Russell, N. Murphy & C. J. Isham (eds.), Quantum Physics and Divine Action. Vatican Observatory Publications. pp. 111--140.
    Abstract: This paper assesses the Everettian approach to the measurement problem, especially the version of that approach advocated by Simon Saunders and David Wallace. I emphasise conceptual, indeed metaphysical, aspects rather than technical ones; but I include an introductory exposition of decoherence. In particular, I discuss whether---as these authors maintain---it is acceptable to have no precise definition of 'branch' (in the Everettian kind of sense). (A version of this paper will appear in a CTNS/Vatican Observatory volume on Quantum Theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • A Prolegomenon to the Ontology of the Everett Interpretation.David Wallace - unknown
    In this article, I briefly explain the quantum measurement problem and the Everett interpretation, in a way that is faithful to modern physics and yet accessible to readers without any physics training. I then consider the metaphysical lessons for ontology from quantum mechanics under the Everett interpretation. My conclusions are largely negative: I argue that very little can be said in full generality about the ontology of quantum mechanics, because quantum mechanics, like abstract classical mechanics, is a framework within which (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • In Defense of the Metaphysics of Entanglement.David Glick & George Darby - forthcoming - In David Glick, George Darby & Anna Marmodoro (eds.), The Foundation of Reality: Fundamentality, Space, and Time. Oxford University Press.
    Quantum entanglement has long been thought to be have deep metaphysical consequences. For example, it has been claimed to show that Humean supervenience is false or to involve a novel form of ontological holism. One way to avoid confronting the metaphysical consequences is to adopt some form of antirealism. In this paper we discuss two prominent strands in recent literature—wavefunction realism and “Super-Humeanism”—that appear quite different, but, as we see it, are instances of a more general strategy. In effect, what (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The quantum measurement problem: State of play.David Wallace - 2007 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Everett Interpretation.David Wallace - unknown
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short and self-contained introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Language use in a branching universe.David Wallace - unknown
    I investigate the consequences for semantics, and in particular for the semantics of tense, if time is assumed to have a branching structure not out of metaphysical necessity (to solve some philosophical problem) but just as a contingent physical fact, as is suggested by a currently-popular approach to the interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Deep metaphysical indeterminacy.Bradford Skow - 2010 - Philosophical Quarterly 60 (241):851 - 858.
    A recent theory of metaphysical indeterminacy says that metaphysical indeterminacy is multiple actuality: there is metaphysical indeterminacy when there are many 'complete precisifications of reality'. But it is possible for there to be metaphysical indeterminacy even when it is impossible to precisify reality completely. The orthodox interpretation of quantum mechanics illustrates this possibility. So this theory of metaphysical indeterminacy is not adequate.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Times two: The tenses of linear and collapse dynamics in relational quantum mechanics.Andrew Soltau - manuscript
    The nature and topology of time remains an open question in philosophy, both tensed and tenseless concepts of time appear to have merit. A concept of time including both kinds of time evolution of physical systems in quantum mechanics subsumes the properties of both notions. The linear dynamics defines the universe probabilistically throughout space-time, and can be seen as the definition of a block universe. The collapse dynamics is the time evolution of the linear dynamics, and is thus of different (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-relativistic quantum mechanics.Michael Dickson - unknown
    This essay is a discussion of the philosophical and foundational issues that arise in non-relativistic quantum theory. After introducing the formalism of the theory, I consider: characterizations of the quantum formalism, empirical content, uncertainty, the measurement problem, and non-locality. In each case, the main point is to give the reader some introductory understanding of some of the major issues and recent ideas.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Why quantum correlates of consciousness are fine, but not enough.Ruediger Vaas - 2001 - Informacao E Cognicao 3 (1):64-107.
    The existence of quantum correlates of consciousness (QCC) is doubtful from a scientific perspective. But even if their existence were verified, philosophical problems would remain. On the other hand, there could be more to QCC than meets the sceptic's eye: • QCC might be useful or even necessary for a better understanding of conscious experience or quantum physics or both. The main reasons for this are: the measurement problem (the nature of observation, the mysterious collapse of the wave function, etc.), (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Time before time - classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world.Ruediger Vaas - unknown
    Did the universe have a beginning or does it exist forever, i.e. is it eternal at least in relation to the past? This fundamental question was a main topic in ancient philosophy of nature and the Middle Ages. Philosophically it was more or less banished then by Immanuel Kant's Critique of Pure Reason. But it used to have and still has its revival in modern physical cosmology both in the controversy between the big bang and steady state models some decades (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Quantum Gravity to Classical Phenomena.Michael Esfeld & Antonio Vassallo - 2013 - In Tilman Sauer & Adrian Wüthrich (eds.), New Vistas on Old Problems. Max Planck Research Library for the History and Development of Knowledge.
    Quantum gravity is supposed to be the most fundamental theory, including a quantum theory of the metrical field (spacetime). However, it is not clear how a quantum theory of gravity could account for classical phenomena, including notably measurement outcomes. But all the evidence that we have for a physical theory is based on measurement outcomes. We consider this problem in the framework of canonical quantum gravity, pointing out a dilemma: all the available accounts that admit classical phenomena presuppose entities with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An argument for 4d blockworld from a geometric interpretation of non-relativistic quantum mechanics.Michael Silberstein, W. M. Stuckey & Michael Cifone - unknown
    We use a new, distinctly “geometrical” interpretation of non-relativistic quantum mechanics (NRQM) to argue for the fundamentality of the 4D blockworld ontology. We argue for a geometrical interpretation whose fundamental ontology is one of spacetime relations as opposed to constructive entities whose time-dependent behavior is governed by dynamical laws. Our view rests on two formal results: Kaiser (1981 & 1990), Bohr & Ulfbeck (1995) and Anandan, (2003) showed independently that the Heisenberg commutation relations of NRQM follow from the relativity of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Objects: Sigma Interpretation for Measurement Problem.Alireza Mansouri, Mehdi Golshani & Amir Ehsan Karbasizadeh - 2012 - Metaphysics (University of Isfahan) 3 (11):89-112.
    In this paper, we suggest an alternative interpretation for the state vector which, by considering temporal parts for physical objects, aims to give an intelligible account of measurement problem in quantum mechanics. This interpretation, it is claimed, has the capacity to solve three measurement problems: the problem of outcome, the problem of statistics and the problem of effect. We argue that it not only provides us with an account of measurement problem but also shows us yet another limitation of our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • What does it feel like to be in a quantum superposition?Shan Gao - unknown
    We suggest a new answer to this intriguing question and argue that the answer may have implications for the solutions to the measurement problem. The main basis of our analysis is the doctrine of psychophysical supervenience. First of all, based on this doctrine, we argue that an observer in a quantum superposition or a quantum observer has a definite conscious experience, which is neither disjunctive nor illusive. The inconsistency of this result with the bare theory is further analyzed, and it (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Universe superposition, relational quantum mechanics, and the reality of the no-collapse universe.Andrew Soltau - manuscript
    A perspective on Everett's relative state formulation is proposed leading to a relational quantum mechanics. There are inevitably a large number of different versions of the universe in which a specific observer could exist, and in the universe of the unitary wave function they are all existing and coincident. If these different versions of the universe are superposed the result is a universe in which the superposition of all of the identical copies sums to a single observer. The effective universe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Neural unpredictability, the interpretation of quantum theory, and the mind-body problem.Matthew J. Donald - 2002 - Quant-Ph/0208033.
    It has been suggested, on the one hand, that quantum states are just states of knowledge; and, on the other, that quantum theory is merely a theory of correlations. These suggestions are confronted with problems about the nature of psycho-physical parallelism and about how we could define probabilities for our individual future observations given our individual present and previous observations. The complexity of the problems is underlined by arguments that unpredictability in ordinary everyday neural functioning, ultimately stemming from small-scale uncertainties (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Quantum Mechanics of Being and Its Manifestation.Ulrich Mohrhoff - 2016 - Cosmology 24.
    How can quantum mechanics be (i) the fundamental theoretical framework of contemporary physics and (ii) a probability calculus that presupposes the events to which, and on the basis of which, it assigns probabilities? The question is answered without invoking knowledge or observers, by interpreting the necessary distinction between two kinds of physical quantities - unconditionally definite quantities and quantities that have values only if they are measured - as a distinction between the manifested world and its manifestation.(The arXived version contains (...)
    Download  
     
    Export citation  
     
    Bookmark