Switch to: References

Add citations

You must login to add citations.
  1. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these versions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Yabloesque paradox in epistemic game theory.Can Başkent - 2018 - Synthese 195 (1):441-464.
    The Brandenburger–Keisler paradox is a self-referential paradox in epistemic game theory which can be viewed as a two-person version of Russell’s Paradox. Yablo’s Paradox, according to its author, is a non-self referential paradox, which created a significant impact. This paper gives a Yabloesque, non-self-referential paradox for infinitary players within the context of epistemic game theory. The new paradox advances both the Brandenburger–Keisler and Yablo results. Additionally, the paper constructs a paraconsistent model satisfying the paradoxical statement.
    Download  
     
    Export citation  
     
    Bookmark  
  • Buttresses of the Turing Barrier.Paolo Cotogno - 2015 - Acta Analytica 30 (3):275-282.
    The ‘Turing barrier’ is an evocative image for 0′, the degree of the unsolvability of the halting problem for Turing machines—equivalently, of the undecidability of Peano Arithmetic. The ‘barrier’ metaphor conveys the idea that effective computability is impaired by restrictions that could be removed by infinite methods. Assuming that the undecidability of PA is essentially depending on the finite nature of its computational means, decidability would be restored by the ω-rule. Hypercomputation, the hypothetical realization of infinitary machines through relativistic and (...)
    Download  
     
    Export citation  
     
    Bookmark