Switch to: References

Add citations

You must login to add citations.
  1. An analysis of gödel's dialectica interpretation via linear logic.Paulo Oliva - 2008 - Dialectica 62 (2):269–290.
    This article presents an analysis of Gödel's dialectica interpretation via a refinement of intuitionistic logic known as linear logic. Linear logic comes naturally into the picture once one observes that the structural rule of contraction is the main cause of the lack of symmetry in Gödel's interpretation. We use the fact that the dialectica interpretation of intuitionistic logic can be viewed as a composition of Girard's embedding of intuitionistic logic into linear logic followed by de Paiva's dialectica interpretation of linear (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A most artistic package of a jumble of ideas.Fernando Ferreira - 2008 - Dialectica 62 (2):205–222.
    In the course of ten short sections, we comment on Gödel's seminal dialectica paper of fifty years ago and its aftermath. We start by suggesting that Gödel's use of functionals of finite type is yet another instance of the realistic attitude of Gödel towards mathematics, in tune with his defense of the postulation of ever increasing higher types in foundational studies. We also make some observations concerning Gödel's recasting of intuitionistic arithmetic via the dialectica interpretation, discuss the extra principles that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logical metatheorems for accretive and (generalized) monotone set-valued operators.Nicholas Pischke - 2023 - Journal of Mathematical Logic 24 (2).
    Accretive and monotone operator theory are central branches of nonlinear functional analysis and constitute the abstract study of certain set-valued mappings between function spaces. This paper deals with the computational properties of these accretive and (generalized) monotone set-valued operators. In particular, we develop (and extend) for this field the theoretical framework of proof mining, a program in mathematical logic that seeks to extract computational information from prima facie “non-computational” proofs from the mainstream literature. To this end, we establish logical metatheorems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intuitionistic nonstandard bounded modified realisability and functional interpretation.Bruno Dinis & Jaime Gaspar - 2018 - Annals of Pure and Applied Logic 169 (5):392-412.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)On the arithmetical content of restricted forms of comprehension, choice and general uniform boundedness.Ulrich Kohlenbach - 1998 - Annals of Pure and Applied Logic 95 (1-3):257-285.
    In this paper the numerical strength of fragments of arithmetical comprehension, choice and general uniform boundedness is studied systematically. These principles are investigated relative to base systems Tnω in all finite types which are suited to formalize substantial parts of analysis but nevertheless have provably recursive functions of low growth. We reduce the use of instances of these principles in Tnω-proofs of a large class of formulas to the use of instances of certain arithmetical principles thereby determining faithfully the arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bounded functional interpretation and feasible analysis.Fernando Ferreira & Paulo Oliva - 2007 - Annals of Pure and Applied Logic 145 (2):115-129.
    In this article we study applications of the bounded functional interpretation to theories of feasible arithmetic and analysis. The main results show that the novel interpretation is sound for considerable generalizations of weak König’s Lemma, even in the presence of very weak induction. Moreover, when this is combined with Cook and Urquhart’s variant of the functional interpretation, one obtains effective versions of conservation results regarding weak König’s Lemma which have been so far only obtained non-constructively.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Injecting uniformities into Peano arithmetic.Fernando Ferreira - 2009 - Annals of Pure and Applied Logic 157 (2-3):122-129.
    We present a functional interpretation of Peano arithmetic that uses Gödel’s computable functionals and which systematically injects uniformities into the statements of finite-type arithmetic. As a consequence, some uniform boundedness principles are interpreted while maintaining unmoved the -sentences of arithmetic. We explain why this interpretation is tailored to yield conservation results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the computational content of the Bolzano-Weierstraß Principle.Pavol Safarik & Ulrich Kohlenbach - 2010 - Mathematical Logic Quarterly 56 (5):508-532.
    We will apply the methods developed in the field of ‘proof mining’ to the Bolzano-Weierstraß theorem BW and calibrate the computational contribution of using this theorem in proofs of combinatorial statements. We provide an explicit solution of the Gödel functional interpretation as well as the monotone functional interpretation of BW for the product space Πi ∈ℕ[–ki, ki] . This results in optimal program and bound extraction theorems for proofs based on fixed instances of BW, i.e. for BW applied to fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals.Ulrich Kohlenbach - 1996 - Archive for Mathematical Logic 36 (1):31-71.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Confined modified realizability.Gilda Ferreira & Paulo Oliva - 2010 - Mathematical Logic Quarterly 56 (1):13-28.
    We present a refinement ofthe bounded modified realizability which provides both upper and lower bounds for witnesses. Our interpretation is based on a generalisation of Howard/Bezem's notion of strong majorizability. We show how the bounded modified realizability coincides with our interpretation in the case when least elements exist . The new interpretation, however, permits the extraction of more accurate bounds, and provides an ideal setting for dealing directly with data types whose natural ordering is not well-founded.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bounded functional interpretation.Fernando Ferreira & Paulo Oliva - 2005 - Annals of Pure and Applied Logic 135 (1):73-112.
    We present a new functional interpretation, based on a novel assignment of formulas. In contrast with Gödel’s functional “Dialectica” interpretation, the new interpretation does not care for precise witnesses of existential statements, but only for bounds for them. New principles are supported by our interpretation, including the FAN theorem, weak König’s lemma and the lesser limited principle of omniscience. Conspicuous among these principles are also refutations of some laws of classical logic. Notwithstanding, we end up discussing some applications of the (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Equivalence of bar recursors in the theory of functionals of finite type.Marc Bezem - 1988 - Archive for Mathematical Logic 27 (2):149-160.
    The main result of this paper is the equivalence of several definition schemas of bar recursion occurring in the literature on functionals of finite type. We present the theory of functionals of finite type, in [T] denoted byqf-WE-HA ω, which is necessary for giving the equivalence proofs. Moreover we prove two results on this theory that cannot be found in the literature, namely the deduction theorem and a derivation of Spector's rule of extensionality from [S]: ifP→T 1=T 2 and Q[X∶≡T1], (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A proof‐theoretic metatheorem for tracial von Neumann algebras.Liviu Păunescu & Andrei Sipoş - 2023 - Mathematical Logic Quarterly 69 (1):63-76.
    We adapt a continuous logic axiomatization of tracial von Neumann algebras due to Farah, Hart and Sherman in order to prove a metatheorem for this class of structures in the style of proof mining, a research programme that aims to obtain the hidden computational content of ordinary mathematical proofs using tools from proof theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • The equivalence of bar recursion and open recursion.Thomas Powell - 2014 - Annals of Pure and Applied Logic 165 (11):1727-1754.
    Several extensions of Gödel's system TT with new forms of recursion have been designed for the purpose of giving a computational interpretation to classical analysis. One can organise many of these extensions into two groups: those based on bar recursion , which include Spector's original bar recursion, modified bar recursion and the more recent products of selections functions, or those based on open recursion which in particular include the symmetric Berardi–Bezem–Coquand functional. We relate these two groups by showing that both (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Functional interpretation of Aczel's constructive set theory.Wolfgang Burr - 2000 - Annals of Pure and Applied Logic 104 (1-3):31-73.
    In the present paper we give a functional interpretation of Aczel's constructive set theories CZF − and CZF in systems T ∈ and T ∈ + of constructive set functionals of finite types. This interpretation is obtained by a translation × , a refinement of the ∧ -translation introduced by Diller and Nahm 49–66) which again is an extension of Gödel's Dialectica translation. The interpretation theorem gives characterizations of the definable set functions of CZF − and CZF in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Unifying Functional Interpretations.Paulo Oliva - 2006 - Notre Dame Journal of Formal Logic 47 (2):263-290.
    This article presents a parametrized functional interpretation. Depending on the choice of two parameters one obtains well-known functional interpretations such as Gödel's Dialectica interpretation, Diller-Nahm's variant of the Dialectica interpretation, Kohlenbach's monotone interpretations, Kreisel's modified realizability, and Stein's family of functional interpretations. A functional interpretation consists of a formula interpretation and a soundness proof. I show that all these interpretations differ only on two design choices: first, on the number of counterexamples for A which became witnesses for ¬A when defining (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Relative constructivity.Ulrich Kohlenbach - 1998 - Journal of Symbolic Logic 63 (4):1218-1238.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Classical provability of uniform versions and intuitionistic provability.Makoto Fujiwara & Ulrich Kohlenbach - 2015 - Mathematical Logic Quarterly 61 (3):132-150.
    Along the line of Hirst‐Mummert and Dorais, we analyze the relationship between the classical provability of uniform versions Uni(S) of Π2‐statements S with respect to higher order reverse mathematics and the intuitionistic provability of S. Our main theorem states that (in particular) for every Π2‐statement S of some syntactical form, if its uniform version derives the uniform variant of over a classical system of arithmetic in all finite types with weak extensionality, then S is not provable in strong semi‐intuitionistic systems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polymorphic extensions of simple type structures. With an application to a bar recursive minimization.Erik Barendsen & Marc Bezem - 1996 - Annals of Pure and Applied Logic 79 (3):221-280.
    The technical contribution of this paper is threefold.First we show how to encode functionals in a ‘flat’ applicative structure by adding oracles to untyped λ-calculus and mimicking the applicative behaviour of the functionals with an impredicatively defined reduction relation. The main achievement here is a Church-Rosser result for the extended reduction relation.Second, by combining the previous result with the model construction based on partial equivalence relations, we show how to extend a λ-closed simple type structure to a model of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Spector's bar recursion.Paulo Oliva & Thomas Powell - 2012 - Mathematical Logic Quarterly 58 (4-5):356-265.
    We show that Spector's “restricted” form of bar recursion is sufficient (over system T) to define Spector's search functional. This new result is then used to show that Spector's restricted form of bar recursion is in fact as general as the supposedly more general form of bar recursion. Given that these two forms of bar recursion correspond to the (explicitly controlled) iterated products of selection function and quantifiers, it follows that this iterated product of selection functions is T‐equivalent to the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gödel functional interpretation and weak compactness.Ulrich Kohlenbach - 2012 - Annals of Pure and Applied Logic 163 (11):1560-1579.
    In recent years, proof theoretic transformations that are based on extensions of monotone forms of Gödel’s famous functional interpretation have been used systematically to extract new content from proofs in abstract nonlinear analysis. This content consists both in effective quantitative bounds as well as in qualitative uniformity results. One of the main ineffective tools in abstract functional analysis is the use of sequential forms of weak compactness. As we recently verified, the sequential form of weak compactness for bounded closed and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On bounded functional interpretations.Gilda Ferreira & Paulo Oliva - 2012 - Annals of Pure and Applied Logic 163 (8):1030-1049.
    Download  
     
    Export citation  
     
    Bookmark  
  • Primitive Recursion and the Chain Antichain Principle.Alexander P. Kreuzer - 2012 - Notre Dame Journal of Formal Logic 53 (2):245-265.
    Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The bounded functional interpretation of the double negation shift.Patrícia Engrácia & Fernando Ferreira - 2010 - Journal of Symbolic Logic 75 (2):759-773.
    We prove that the (non-intuitionistic) law of the double negation shift has a bounded functional interpretation with bar recursive functionals of finite type. As an application. we show that full numerical comprehension is compatible with the uniformities introduced by the characteristic principles of the bounded functional interpretation for the classical case.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bar recursion over finite partial functions.Paulo Oliva & Thomas Powell - 2017 - Annals of Pure and Applied Logic 168 (5):887-921.
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonstandardness and the bounded functional interpretation.Fernando Ferreira & Jaime Gaspar - 2015 - Annals of Pure and Applied Logic 166 (6):701-712.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Strongly uniform bounds from semi-constructive proofs.Philipp Gerhardy & Ulrich Kohlenbach - 2006 - Annals of Pure and Applied Logic 141 (1):89-107.
    In [U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 89–128], the second author obtained metatheorems for the extraction of effective bounds from classical, prima facie non-constructive proofs in functional analysis. These metatheorems for the first time cover general classes of structures like arbitrary metric, hyperbolic, CAT and normed linear spaces and guarantee the independence of the bounds from parameters ranging over metrically bounded spaces. Recently ]), the authors obtained generalizations of these metatheorems which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An application of proof mining to nonlinear iterations.Laurenţiu Leuştean - 2014 - Annals of Pure and Applied Logic 165 (9):1484-1500.
    In this paper we apply methods of proof mining to obtain a highly uniform effective rate of asymptotic regularity for the Ishikawa iteration associated with nonexpansive self-mappings of convex subsets of a class of uniformly convex geodesic spaces. Moreover, we show that these results are guaranteed by a combination of logical metatheorems for classical and semi-intuitionistic systems.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pointwise hereditary majorization and some applications.Ulrich Kohlenbach - 1992 - Archive for Mathematical Logic 31 (4):227-241.
    A pointwise version of the Howard-Bezem notion of hereditary majorization is introduced which has various advantages, and its relation to the usual notion of majorization is discussed. This pointwise majorization of primitive recursive functionals (in the sense of Gödel'sT as well as Kleene/Feferman's ) is applied to systems of intuitionistic and classical arithmetic (H andH c) in all finite types with full induction as well as to the corresponding systems with restricted inductionĤ↾ andĤ↾c.H and Ĥ↾ are closed under a generalized (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The abstract type of the real numbers.Fernando Ferreira - 2021 - Archive for Mathematical Logic 60 (7):1005-1017.
    In finite type arithmetic, the real numbers are represented by rapidly converging Cauchy sequences of rational numbers. Ulrich Kohlenbach introduced abstract types for certain structures such as metric spaces, normed spaces, Hilbert spaces, etc. With these types, the elements of the spaces are given directly, not through the mediation of a representation. However, these abstract spaces presuppose the real numbers. In this paper, we show how to set up an abstract type for the real numbers. The appropriateness of our construction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The bounded functional interpretation of bar induction.Patrícia Engrácia - 2012 - Annals of Pure and Applied Logic 163 (9):1183-1195.
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting weak Kőnig's lemma in theories of nonstandard arithmetic.Bruno Dinis & Fernando Ferreira - 2017 - Mathematical Logic Quarterly 63 (1-2):114-123.
    We show how to interpret weak Kőnig's lemma in some recently defined theories of nonstandard arithmetic in all finite types. Two types of interpretations are described, with very different verifications. The celebrated conservation result of Friedman's about weak Kőnig's lemma can be proved using these interpretations. We also address some issues concerning the collecting of witnesses in herbrandized functional interpretations.
    Download  
     
    Export citation  
     
    Bookmark   2 citations