Switch to: References

Add citations

You must login to add citations.
  1. Beyond incompatibility: Trade-offs between mutually exclusive fairness criteria in machine learning and law.Meike Zehlike, Alex Loosley, Håkan Jonsson, Emil Wiedemann & Philipp Hacker - 2025 - Artificial Intelligence 340 (C):104280.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2022 - AI and Society 37 (1):215-230.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Linking Human And Machine Behavior: A New Approach to Evaluate Training Data Quality for Beneficial Machine Learning.Thilo Hagendorff - 2021 - Minds and Machines 31 (4):563-593.
    Machine behavior that is based on learning algorithms can be significantly influenced by the exposure to data of different qualities. Up to now, those qualities are solely measured in technical terms, but not in ethical ones, despite the significant role of training and annotation data in supervised machine learning. This is the first study to fill this gap by describing new dimensions of data quality for supervised machine learning applications. Based on the rationale that different social and psychological backgrounds of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From FAIR data to fair data use: Methodological data fairness in health-related social media research.Hywel Williams, Lora Fleming, Benedict W. Wheeler, Rebecca Lovell & Sabina Leonelli - 2021 - Big Data and Society 8 (1).
    The paper problematises the reliability and ethics of using social media data, such as sourced from Twitter or Instagram, to carry out health-related research. As in many other domains, the opportunity to mine social media for information has been hailed as transformative for research on well-being and disease. Considerations around the fairness, responsibilities and accountabilities relating to using such data have often been set aside, on the understanding that as long as data were anonymised, no real ethical or scientific issue (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research.Markus Langer, Daniel Oster, Timo Speith, Lena Kästner, Kevin Baum, Holger Hermanns, Eva Schmidt & Andreas Sesing - 2021 - Artificial Intelligence 296 (C):103473.
    Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these “stakeholders' desiderata”) in a variety of contexts. However, the literature on XAI is vast, spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata. This paper discusses the main classes of stakeholders calling for explainability (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Ethics of AI Ethics: An Evaluation of Guidelines.Thilo Hagendorff - 2020 - Minds and Machines 30 (1):99-120.
    Current advances in research, development and application of artificial intelligence systems have yielded a far-reaching discourse on AI ethics. In consequence, a number of ethics guidelines have been released in recent years. These guidelines comprise normative principles and recommendations aimed to harness the “disruptive” potentials of new AI technologies. Designed as a semi-systematic evaluation, this paper analyzes and compares 22 guidelines, highlighting overlaps but also omissions. As a result, I give a detailed overview of the field of AI ethics. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Democratizing Algorithmic Fairness.Pak-Hang Wong - 2020 - Philosophy and Technology 33 (2):225-244.
    Algorithms can now identify patterns and correlations in the (big) datasets, and predict outcomes based on those identified patterns and correlations with the use of machine learning techniques and big data, decisions can then be made by algorithms themselves in accordance with the predicted outcomes. Yet, algorithms can inherit questionable values from the datasets and acquire biases in the course of (machine) learning, and automated algorithmic decision-making makes it more difficult for people to see algorithms as biased. While researchers have (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Ethics of Artificial Intelligence and Robotics.Vincent C. Müller - 2020 - In Edward N. Zalta (ed.), Stanford Encylopedia of Philosophy. pp. 1-70.
    Artificial intelligence (AI) and robotics are digital technologies that will have significant impact on the development of humanity in the near future. They have raised fundamental questions about what we should do with these systems, what the systems themselves should do, what risks they involve, and how we can control these. - After the Introduction to the field (§1), the main themes (§2) of this article are: Ethical issues that arise with AI systems as objects, i.e., tools made and used (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Unfairness in AI Anti-Corruption Tools: Main Drivers and Consequences.Fernanda Odilla - 2024 - Minds and Machines 34 (3):1-35.
    This article discusses the potential sources and consequences of unfairness in artificial intelligence (AI) predictive tools used for anti-corruption efforts. Using the examples of three AI-based anti-corruption tools from Brazil—risk estimation of corrupt behaviour in public procurement, among public officials, and of female straw candidates in electoral contests—it illustrates how unfairness can emerge at the infrastructural, individual, and institutional levels. The article draws on interviews with law enforcement officials directly involved in the development of anti-corruption tools, as well as academic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Toward Sociotechnical AI: Mapping Vulnerabilities for Machine Learning in Context.Roel Dobbe & Anouk Wolters - 2024 - Minds and Machines 34 (2):1-51.
    This paper provides an empirical and conceptual account on seeing machine learning models as part of a sociotechnical system to identify relevant vulnerabilities emerging in the context of use. As ML is increasingly adopted in socially sensitive and safety-critical domains, many ML applications end up not delivering on their promises, and contributing to new forms of algorithmic harm. There is still a lack of empirical insights as well as conceptual tools and frameworks to properly understand and design for the impact (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Governing algorithmic decisions: The role of decision importance and governance on perceived legitimacy of algorithmic decisions.Kirsten Martin & Ari Waldman - 2022 - Big Data and Society 9 (1).
    The algorithmic accountability literature to date has primarily focused on procedural tools to govern automated decision-making systems. That prescriptive literature elides a fundamentally empirical question: whether and under what circumstances, if any, is the use of algorithmic systems to make public policy decisions perceived as legitimate? The present study begins to answer this question. Using factorial vignette survey methodology, we explore the relative importance of the type of decision, the procedural governance, the input data used, and outcome errors on perceptions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence.Alexander Buhmann & Christian Fieseler - forthcoming - Business Ethics Quarterly:1-34.
    Responsible innovation in artificial intelligence calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Weapons of moral construction? On the value of fairness in algorithmic decision-making.Simona Tiribelli & Benedetta Giovanola - 2022 - Ethics and Information Technology 24 (1):1-13.
    Fairness is one of the most prominent values in the Ethics and Artificial Intelligence (AI) debate and, specifically, in the discussion on algorithmic decision-making (ADM). However, while the need for fairness in ADM is widely acknowledged, the very concept of fairness has not been sufficiently explored so far. Our paper aims to fill this gap and claims that an ethically informed re-definition of fairness is needed to adequately investigate fairness in ADM. To achieve our goal, after an introductory section aimed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From privacy to anti-discrimination in times of machine learning.Thilo Hagendorff - 2019 - Ethics and Information Technology 21 (4):331-343.
    Due to the technology of machine learning, new breakthroughs are currently being achieved with constant regularity. By using machine learning techniques, computer applications can be developed and used to solve tasks that have hitherto been assumed not to be solvable by computers. If these achievements consider applications that collect and process personal data, this is typically perceived as a threat to information privacy. This paper aims to discuss applications from both fields of personality and image analysis. These applications are often (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • AI4people − an ethical framework for a good AI society: the Ghana (Ga) perspective.Laud Nii Attoh Ammah, Christoph Lütge, Alexander Kriebitz & Lavina Ramkissoon - 2024 - Journal of Information, Communication and Ethics in Society 22 (4):453-465.
    Purpose The introduction of artificial intelligence (AI) applications in the Global South brings tremendous potential for both good and harm. This paper aims to highlight the guiding ethical principles and normative frameworks for the ethical use of AI in the lens of the traditional Ga (a tribe in Ghana) philosophy and add to the academic literature and research on AI and ethics within the African context. Design/methodology/approach Literature overview on the African philosophy of Ga tradition as applied to AI and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Policy advice and best practices on bias and fairness in AI.Jose M. Alvarez, Alejandra Bringas Colmenarejo, Alaa Elobaid, Simone Fabbrizzi, Miriam Fahimi, Antonio Ferrara, Siamak Ghodsi, Carlos Mougan, Ioanna Papageorgiou, Paula Reyero, Mayra Russo, Kristen M. Scott, Laura State, Xuan Zhao & Salvatore Ruggieri - 2024 - Ethics and Information Technology 26 (2):1-26.
    The literature addressing bias and fairness in AI models (fair-AI) is growing at a fast pace, making it difficult for novel researchers and practitioners to have a bird’s-eye view picture of the field. In particular, many policy initiatives, standards, and best practices in fair-AI have been proposed for setting principles, procedures, and knowledge bases to guide and operationalize the management of bias and fairness. The first objective of this paper is to concisely survey the state-of-the-art of fair-AI methods and resources, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Getting into the engine room: a blueprint to investigate the shadowy steps of AI ethics.Johan Rochel & Florian Evéquoz - 2021 - AI and Society 36 (2):609-622.
    Enacting an AI system typically requires three iterative phases where AI engineers are in command: selection and preparation of the data, selection and configuration of algorithmic tools, and fine-tuning of the different parameters on the basis of intermediate results. Our main hypothesis is that these phases involve practices with ethical questions. This paper maps these ethical questions and proposes a way to address them in light of a neo-republican understanding of freedom, defined as absence of domination. We thereby identify different (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature.Frank Marcinkowski, Birte Keller, Janine Baleis & Christopher Starke - 2022 - Big Data and Society 9 (2).
    Algorithmic decision-making increasingly shapes people's daily lives. Given that such autonomous systems can cause severe harm to individuals and social groups, fairness concerns have arisen. A human-centric approach demanded by scholars and policymakers requires considering people's fairness perceptions when designing and implementing algorithmic decision-making. We provide a comprehensive, systematic literature review synthesizing the existing empirical insights on perceptions of algorithmic fairness from 58 empirical studies spanning multiple domains and scientific disciplines. Through thorough coding, we systemize the current empirical literature along (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Turning biases into hypotheses through method: A logic of scientific discovery for machine learning.Maja Bak Herrie & Simon Aagaard Enni - 2021 - Big Data and Society 8 (1).
    Machine learning systems have shown great potential for performing or supporting inferential reasoning through analyzing large data sets, thereby potentially facilitating more informed decision-making. However, a hindrance to such use of ML systems is that the predictive models created through ML are often complex, opaque, and poorly understood, even if the programs “learning” the models are simple, transparent, and well understood. ML models become difficult to trust, since lay-people, specialists, and even researchers have difficulties gauging the reasonableness, correctness, and reliability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Personal Data v. Big Data in the EU: Control Lost, Discrimination Found.Maria Bottis & George Bouchagiar - 2018 - Open Journal of Philosophy 8 (3):192-205.
    Download  
     
    Export citation  
     
    Bookmark