Switch to: References

Citations of:

Sur l'opposition des concepts

Theoria 19 (3):89-130 (1953)

Add citations

You must login to add citations.
  1. The critics of paraconsistency and of many-valuedness and the geometry of oppositions.Alessio Moretti - 2010 - Logic and Logical Philosophy 19 (1-2):63-94.
    In 1995 Slater argued both against Priest’s paraconsistent system LP (1979) and against paraconsistency in general, invoking the fundamental opposition relations ruling the classical logical square. Around 2002 Béziau constructed a double defence of paraconsistency (logical and philosophical), relying, in its philosophical part, on Sesmat’s (1951) and Blanche’s (1953) “logical hexagon”, a geometrical, conservative extension of the logical square, and proposing a new (tridimensional) “solid of opposition”, meant to shed new light on the point raised by Slater. By using n-opposition (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The power of the hexagon.Jean-Yves Béziau - 2012 - Logica Universalis 6 (1-2):1-43.
    The hexagon of opposition is an improvement of the square of opposition due to Robert Blanché. After a short presentation of the square and its various interpretations, we discuss two important problems related with the square: the problem of the I-corner and the problem of the O-corner. The meaning of the notion described by the I-corner does not correspond to the name used for it. In the case of the O-corner, the problem is not a wrong-name problem but a no-name (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory.Didier Dubois & Henri Prade - 2012 - Logica Universalis 6 (1-2):149-169.
    The paper first introduces a cube of opposition that associates the traditional square of opposition with the dual square obtained by Piaget’s reciprocation. It is then pointed out that Blanché’s extension of the square-of-opposition structure into an conceptual hexagonal structure always relies on an abstract tripartition. Considering quadripartitions leads to organize the 16 binary connectives into a regular tetrahedron. Lastly, the cube of opposition, once interpreted in modal terms, is shown to account for a recent generalization of formal concept analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • An Essay on Knowledge and Belief.John Corcoran - 2006 - International Journal of Decision Ethics (2):125-144.
    This accessible essay treats knowledge and belief in a usable and applicable way. Many of its basic ideas have been developed recently in Corcoran-Hamid 2014: Investigating knowledge and opinion. The Road to Universal Logic. Vol. I. Arthur Buchsbaum and Arnold Koslow, Editors. Springer. Pp. 95-126. http://www.springer.com/birkhauser/mathematics/book/978-3-319-10192-7 .
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • MacColl’s Modes of Modalities.Fabien Schang - 2011 - Philosophia Scientiae 15:149-188.
    Hugh MacColl is commonly seen as a pioneer of modal and many-valued logic, given his introduction of modalities that go beyond plain truth and falsehood. But a closer examination shows that such a legacy is debatable and should take into account the way in which these modalities proceeded. We argue that, while MacColl devised a modal logic in the broad sense of the word, he did not give rise to a many-valued logic in the strict sense. Rather, his logic is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Squares of Oppositions, Commutative Diagrams, and Galois Connections for Topological Spaces and Similarity Structures.Thomas Mormann - manuscript
    The aim of this paper is to elucidate the relationship between Aristotelian conceptual oppositions, commutative diagrams of relational structures, and Galois connections.This is done by investigating in detail some examples of Aristotelian conceptual oppositions arising from topological spaces and similarity structures. The main technical device for this endeavor is the notion of Galois connections of order structures.
    Download  
     
    Export citation  
     
    Bookmark  
  • Avicenna on Possibility and Necessity.Saloua Chatti - 2014 - History and Philosophy of Logic 35 (4):332-353.
    In this paper, I raise the following problem: How does Avicenna define modalities? What oppositional relations are there between modal propositions, whether quantified or not? After giving Avicenna's definitions of possibility, necessity and impossibility, I analyze the modal oppositions as they are stated by him. This leads to the following results: The relations between the singular modal propositions may be represented by means of a hexagon. Those between the quantified propositions may be represented by means of two hexagons that one (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Oppositions and opposites.Fabien Schang - 2012 - In Jean-Yves Béziau & Dale Jacquette (eds.), Around and Beyond the Square of Opposition. New York: Springer Verlag. pp. 147--173.
    A formal theory of oppositions and opposites is proposed on the basis of a non- Fregean semantics, where opposites are negation-forming operators that shed some new light on the connection between opposition and negation. The paper proceeds as follows. After recalling the historical background, oppositions and opposites are compared from a mathematical perspective: the first occurs as a relation, the second as a function. Then the main point of the paper appears with a calculus of oppositions, by means of a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Abstract Logic of Oppositions.Fabien Schang - 2012 - Logic and Logical Philosophy 21 (4):415--438.
    A general theory of logical oppositions is proposed by abstracting these from the Aristotelian background of quantified sentences. Opposition is a relation that goes beyond incompatibility (not being true together), and a question-answer semantics is devised to investigate the features of oppositions and opposites within a functional calculus. Finally, several theoretical problems about its applicability are considered.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Logic and colour.Dany Jaspers - 2012 - Logica Universalis 6 (1-2):227-248.
    In this paper evidence will be provided that Wittgenstein’s intuition about the logic of colour relations is to be taken near-literally. Starting from the Aristotelian oppositions between propositions as represented in the logical square of oppositions on the one hand and oppositions between primary and secondary colors as represented in an octahedron on the other, it will be shown algebraically how definitions for the former carry over to the realm of colour categories and describe very precisely the relations obtaining between (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Cube, the Square and the Problem of Existential Import.Saloua Chatti & Fabien Schang - 2013 - History and Philosophy of Logic 34 (2):101-132.
    We re-examine the problem of existential import by using classical predicate logic. Our problem is: How to distribute the existential import among the quantified propositions in order for all the relations of the logical square to be valid? After defining existential import and scrutinizing the available solutions, we distinguish between three possible cases: explicit import, implicit non-import, explicit negative import and formalize the propositions accordingly. Then, we examine the 16 combinations between the 8 propositions having the first two kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The geometry of standard deontic logic.Alessio Moretti - 2009 - Logica Universalis 3 (1):19-57.
    Whereas geometrical oppositions (logical squares and hexagons) have been so far investigated in many fields of modal logic (both abstract and applied), the oppositional geometrical side of “deontic logic” (the logic of “obligatory”, “forbidden”, “permitted”, . . .) has rather been neglected. Besides the classical “deontic square” (the deontic counterpart of Aristotle’s “logical square”), some interesting attempts have nevertheless been made to deepen the geometrical investigation of the deontic oppositions: Kalinowski (La logique des normes, PUF, Paris, 1972) has proposed a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • “Setting” n-Opposition.Régis Pellissier - 2008 - Logica Universalis 2 (2):235-263.
    Our aim is to show that translating the modal graphs of Moretti’s “n-opposition theory” (2004) into set theory by a suited device, through identifying logical modal formulas with appropriate subsets of a characteristic set, one can, in a constructive and exhaustive way, by means of a simple recurring combinatory, exhibit all so-called “logical bi-simplexes of dimension n” (or n-oppositional figures, that is the logical squares, logical hexagons, logical cubes, etc.) contained in the logic produced by any given modal graph (an (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Modern Versus Classical Structures of Opposition: A Discussion.Didier Dubois, Henri Prade & Agnès Rico - 2024 - Logica Universalis 18 (1):85-112.
    The aim of this work is to revisit the proposal made by Dag Westerståhl a decade ago when he provided a modern reading of the traditional square of opposition and of related structures. We propose a formalization of this modern view and contrast it with the classical one. We discuss what may be a modern hexagon of opposition and a modern cube, and show their interest in particular for relating quantitative expressions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Dynamic Oppositional Symmetries for Color, Jungian and Kantian Categories.Julio Michael Stern - manuscript
    This paper investigates some classical oppositional categories, like synthetic vs. analytic, posterior vs. prior, imagination vs. grammar, metaphor vs. hermeneutics, metaphysics vs. observation, innovation vs. routine, and image vs. sound, and the role they play in epistemology and philosophy of science. The epistemological framework of objective cognitive constructivism is of special interest in these investigations. Oppositional relations are formally represented using algebraic lattice structures like the cube and the hexagon of opposition, with applications in the contexts of modern color theory, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Color-Coded Epistemic Modes in a Jungian Hexagon of Opposition.Julio Michael Stern - 2022 - In Jean-Yves Beziau & Ioannis Vandoulakis (eds.), The Exoteric Square of Opposition. Birkhauser. pp. 303-332.
    This article considers distinct ways of understanding the world, referred to in psychology as functions of consciousness or as cognitive modes, having as the scope of interest epistemology and natural sciences. Inspired by C.G. Jung’s simile of the spectrum, we consider three basic cognitive modes associated to: (R) embodied instinct, experience, and action; (G) reality perception and learning; and (B) concept abstraction, rational thinking, and language. RGB stand for the primary colors: red, green, and blue. Accordingly, a conceptual map between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Historical Transformations of the Square of Opposition as Semiotic Object.Ioannis M. Vandoulakis & Tatiana Yu Denisova - 2020 - Logica Universalis 14 (1):7-26.
    In this paper, we would show how the logical object “square of opposition”, viewed as semiotic object, has been historically transformed since its appearance in Aristotle’s texts until the works of Vasiliev. These transformations were accompanied each time with a new understanding and interpretation of Aristotle’s original text and, in the last case, with a transformation of its geometric configuration. The initial textual codification of the theory of opposition in Aristotle’s works is transformed into a diagrammatic one, based on a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logically-consistent hypothesis testing and the hexagon of oppositions.Julio Michael Stern, Rafael Izbicki, Luis Gustavo Esteves & Rafael Bassi Stern - 2017 - Logic Journal of the IGPL 25 (5):741-757.
    Although logical consistency is desirable in scientific research, standard statistical hypothesis tests are typically logically inconsistent. To address this issue, previous work introduced agnostic hypothesis tests and proved that they can be logically consistent while retaining statistical optimality properties. This article characterizes the credal modalities in agnostic hypothesis tests and uses the hexagon of oppositions to explain the logical relations between these modalities. Geometric solids that are composed of hexagons of oppositions illustrate the conditions for these modalities to be logically (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Questions and Answers about Oppositions.Fabien Schang - 2011 - In Jean-Yves Beziau & Gillman Payette (eds.), The Square of Opposition: A General Framework for Cognition. Peter Lang. pp. 289-319.
    A general characterization of logical opposition is given in the present paper, where oppositions are defined by specific answers in an algebraic question-answer game. It is shown that opposition is essentially a semantic relation of truth values between syntactic opposites, before generalizing the theory of opposition from the initial Apuleian square to a variety of alter- native geometrical representations. In the light of this generalization, the famous problem of existential import is traced back to an ambiguous interpretation of assertoric sentences (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • An Arithmetization of Logical Oppositions.Fabien Schang - 2016 - In Jean-Yves Béziau & Gianfranco Basti (eds.), The Square of Opposition: A Cornerstone of Thought. Basel, Switzerland: Birkhäuser. pp. 215-237.
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Propriedades Naturais e Mundos Possíveis.Renato Mendes Rocha - 2015 - Coleção XVI Encontro ANPOF.
    O objetivo geral da pesquisa da qual esse artigo faz parte é investigar o sistema metafísico que emerge dos trabalhos de David Lewis. Esse sistema pode ser decomposto em pelo menos duas teorias. A primeira nomeada como realismo modal genuíno (RMG) e a segunda como mosaico neo-humeano. O RMG é, sem dúvida, mais popular e defende a hipótese metafísica da existência de uma pluralidade de mundos possíveis. A principal razão em favor dessa hipótese é a sua aplicabilidade na discussão de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Metalogical Decorations of Logical Diagrams.Lorenz Demey & Hans Smessaert - 2016 - Logica Universalis 10 (2-3):233-292.
    In recent years, a number of authors have started studying Aristotelian diagrams containing metalogical notions, such as tautology, contradiction, satisfiability, contingency, strong and weak interpretations of contrariety, etc. The present paper is a contribution to this line of research, and its main aims are both to extend and to deepen our understanding of metalogical diagrams. As for extensions, we not only study several metalogical decorations of larger and less widely known Aristotelian diagrams, but also consider metalogical decorations of another type (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Was Lewis Carroll an Amazing Oppositional Geometer?Alessio Moretti - 2014 - History and Philosophy of Logic 35 (4):383-409.
    Some Carrollian posthumous manuscripts reveal, in addition to his famous ‘logical diagrams’, two mysterious ‘logical charts’. The first chart, a strange network making out of fourteen logical sentences a large 2D ‘triangle’ containing three smaller ones, has been shown equivalent—modulo the rediscovery of a fourth smaller triangle implicit in Carroll's global picture—to a 3D tetrahedron, the four triangular faces of which are the 3+1 Carrollian complex triangles. As it happens, such an until now very mysterious 3D logical shape—slightly deformed—has been (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Hexagonal Framework of the Field $${\mathbb{F}_4}$$ and the Associated Borromean Logic.René Guitart - 2012 - Logica Universalis 6 (1-2):119-147.
    The hexagonal structure for ‘the geometry of logical opposition’, as coming from Aristoteles–Apuleius square and Sesmat–Blanché hexagon, is presented here in connection with, on the one hand, geometrical ideas on duality on triangles (construction of ‘companion’), and on the other hand, constructions of tripartitions, emphasizing that these are exactly cases of borromean objects. Then a new case of a logical interest introduced here is the double magic tripartition determining the semi-ring ${\mathcal{B}_3}$ and this is a borromean object again, in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why the Logical Hexagon?Alessio Moretti - 2012 - Logica Universalis 6 (1-2):69-107.
    The logical hexagon (or hexagon of opposition) is a strange, yet beautiful, highly symmetrical mathematical figure, mysteriously intertwining fundamental logical and geometrical features. It was discovered more or less at the same time (i.e. around 1950), independently, by a few scholars. It is the successor of an equally strange (but mathematically less impressive) structure, the “logical square” (or “square of opposition”), of which it is a much more general and powerful “relative”. The discovery of the former did not raise interest, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Dynamic Oppositional Symmetries for Color, Jungian and Kantian Categories.Julio Michael Stern - 2024 - Logica Universalis 18 (1):235-282.
    This paper investigates some classical oppositional categories, like synthetic versus analytic, posterior versus prior, imagination versus grammar, metaphor versus hermeneutics, metaphysics versus observation, innovation versus routine, and image versus sound, and the role they play in epistemology and philosophy of science. The epistemological framework of _objective cognitive constructivism_ is of special interest in these investigations. Oppositional relations are formally represented using algebraic lattice structures like the cube and the hexagon of opposition, with applications in the contexts of modern color theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The search for symmetry in Hohfeldian modalities.Matteo Pascucci & Giovanni Sileno - 2021 - In Amrita Basu, Gem Stapleton, Sven Linker, Catherine Legg, Emmanuel Manalo & Petrucio Viana (eds.), Diagrammatic Representation and Inference. 12th International Conference, Diagrams 2021, Virtual, September 28–30, 2021, Proceedings. Springer. pp. 87-102.
    In this work we provide an analysis of some issues arising with geometrical representations of a family of deontic and potestative relations that can be classified as Hohfeldian modalities, traditionally illustrated on two diagrams, the Hohfeldian squares. Our main target is the lack of symmetry to be found in various formal accounts by drawing analogies with the square of opposition for alethic modalities. We argue that one should rather rely on an analogy with the alethic hexagon of opposition and exploit (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Brouwer’s Notion of ‘Egoicity’.Ivan Restović - 2022 - Axiomathes 32 (1):83-100.
    According to Brouwer’s ‘theory of the exodus of consciousness’, our experience includes ‘egoicity’, a distinct kind of feeling. In this paper, we describe his phenomenology in order to explore and elaborate on the notion of egoic sensations. In the world of perception formed from sensations, some of them are, Brouwer claims, not completely separated or ‘estranged’ from the subject, which is to say they have a certain degree of egoicity. We claim this phenomenon can be explained in terms of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Boolean considerations on John Buridan's octagons of opposition.Lorenz Demey - 2018 - History and Philosophy of Logic 40 (2):116-134.
    This paper studies John Buridan's octagons of opposition for the de re modal propositions and the propositions of unusual construction. Both Buridan himself and the secondary literature have emphasized the strong similarities between these two octagons (as well as a third one, for propositions with oblique terms). In this paper, I argue that the interconnection between both octagons is more subtle than has previously been thought: if we move beyond the Aristotelian relations, and also take Boolean considerations into account, then (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Sur la structuration du tableau Des connectifs interpropositionnels binaires.Robert Blanché - 1957 - Journal of Symbolic Logic 22 (1):17-18.
    La théorie de la quaternalité, telle que Piaget et Gottschalk l'ont appliquée aux connectifs binaires du calcul bivalent, appelle quelques précisions et compléments.Les seize connectifs ne comportent que deux quaternes complets: celui des jonctions et celui des implications. Leurs similitudes formelles ne doivent pas dissimuler une différence dans leur mode de construction. Elle apparaît sur leurs diagrammes (inspirés du “carré logique” traditionnel) par la place de la cellule initiale et par celles des signes barrés du trait vertical de la négation:En (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Graded Structures of Opposition in Fuzzy Natural Logic.Petra Murinová - 2020 - Logica Universalis 14 (4):495-522.
    The main objective of this paper is devoted to two main parts. First, the paper introduces logical interpretations of classical structures of opposition that are constructed as extensions of the square of opposition. Blanché’s hexagon as well as two cubes of opposition proposed by Morreti and pairs Keynes–Johnson will be introduced. The second part of this paper is dedicated to a graded extension of the Aristotle’s square and Peterson’s square of opposition with intermediate quantifiers. These quantifiers are linguistic expressions such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the 3d visualisation of logical relations.Hans Smessaert - 2009 - Logica Universalis 3 (2):303-332.
    The central aim of this paper is to present a Boolean algebraic approach to the classical Aristotelian Relations of Opposition, namely Contradiction and (Sub)contrariety, and to provide a 3D visualisation of those relations based on the geometrical properties of Platonic and Archimedean solids. In the first part we start from the standard Generalized Quantifier analysis of expressions for comparative quantification to build the Comparative Quantifier Algebra CQA. The underlying scalar structure allows us to define the Aristotelian relations in Boolean terms (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Between Square and Hexagon in Oresme’s Livre du Ciel et du Monde.Lorenz Demey - 2019 - History and Philosophy of Logic 41 (1):36-47.
    In logic, Aristotelian diagrams are almost always assumed to be closed under negation, and are thus highly symmetric in nature. In linguistics, by contrast, these diagrams are used to study lexicalization, which is notoriously not closed under negation, thus yielding more asymmetric diagrams. This paper studies the interplay between logical symmetry and linguistic asymmetry in Aristotelian diagrams. I discuss two major symmetric Aristotelian diagrams, viz. the square and the hexagon of opposition, and show how linguistic considerations yield various asymmetric versions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Disentangling Contradiction from Contrariety via Incompatibility.Jean-Yves Beziau - 2016 - Logica Universalis 10 (2-3):157-170.
    Contradiction is often confused with contrariety. We propose to disentangle contrariety from contradiction using the hexagon of opposition, providing a clear and distinct characterization of three notions: contrariety, contradiction, incompatibility. At the same time, this hexagonal structure describes and explains the relations between them.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Cognitive Ontogenesis of Predicate Logic.Pieter A. M. Seuren - 2014 - Notre Dame Journal of Formal Logic 55 (4):499-532.
    Since Aristotle and the Stoa, there has been a clash, worsened by modern predicate logic, between logically defined operator meanings and natural intuitions. Pragmatics has tried to neutralize the clash by an appeal to the Gricean conversational maxims. The present study argues that the pragmatic attempt has been unsuccessful. The “softness” of the Gricean explanation fails to do justice to the robustness of the intuitions concerned, leaving the relation between the principles evoked and the observed facts opaque. Moreover, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Alpha-Structures and Ladders in Logical Geometry.Alexander De Klerck & Lorenz Demey - forthcoming - Studia Logica:1-36.
    Aristotelian diagrams, such as the square of opposition and other, more complex diagrams, have a long history in philosophical logic. Alpha-structures and ladders are two specific kinds of Aristotelian diagrams, which are often studied together because of their close interactions. The present paper builds upon this research line, by reformulating and investigating alpha-structures and ladders in the contemporary setting of logical geometry, a mathematically sophisticated framework for studying Aristotelian diagrams. In particular, this framework allows us to formulate well-defined functions that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotelian Diagrams in the Debate on Future Contingents: A Methodological Reflection on Hess's Open Future Square of Opposition.Lorenz Demey - 2019 - Sophia 58 (3):321-329.
    In the recent debate on future contingents and the nature of the future, authors such as G. A. Boyd, W. L. Craig, and E. Hess have made use of various logical notions, such as the Aristotelian relations of contradiction and contrariety, and the ‘open future square of opposition.’ My aim in this paper is not to enter into this philosophical debate itself, but rather to highlight, at a more abstract methodological level, the important role that Aristotelian diagrams can play in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Constraints on the lexicalization of logical operators.Roni Katzir & Raj Singh - 2013 - Linguistics and Philosophy 36 (1):1-29.
    We revisit a typological puzzle due to Horn (Doctoral Dissertation, UCLA, 1972) regarding the lexicalization of logical operators: in instantiations of the traditional square of opposition across categories and languages, the O corner, corresponding to ‘nand’ (= not and), ‘nevery’ (= not every), etc., is never lexicalized. We discuss Horn’s proposal, which involves the interaction of two economy conditions, one that relies on scalar implicatures and one that relies on markedness. We observe that in order to express markedness and to (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Contrariety re-encountered: nonstandard contraries and internal negation **.Lloyd Humberstone - 2023 - Logic Journal of the IGPL 31 (6):1084-1134.
    This discussion explores the possibility of distinguishing a tighter notion of contrariety evident in the Square of Opposition, especially in its modal incarnations, than as that binary relation holding statements that cannot both be true, with or without the added rider ‘though can both be false’. More than one theorist has voiced the intuition that the paradigmatic contraries of the traditional Square are related in some such tighter way—involving the specific role played by negation in contrasting them—that distinguishes them from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Syllogisms and 5-Square of Opposition with Intermediate Quantifiers in Fuzzy Natural Logic.Petra Murinová & Vilém Novák - 2016 - Logica Universalis 10 (2-3):339-357.
    In this paper, we provide an overview of some of the results obtained in the mathematical theory of intermediate quantifiers that is part of fuzzy natural logic. We briefly introduce the mathematical formal system used, the general definition of intermediate quantifiers and define three specific ones, namely, “Almost all”, “Most” and “Many”. Using tools developed in FNL, we present a list of valid intermediate syllogisms and analyze a generalized 5-square of opposition.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Analogical Proportion to Logical Proportions.Henri Prade & Gilles Richard - 2013 - Logica Universalis 7 (4):441-505.
    Given a 4-tuple of Boolean variables (a, b, c, d), logical proportions are modeled by a pair of equivalences relating similarity indicators ( \({a \wedge b}\) and \({\overline{a} \wedge \overline{b}}\) ), or dissimilarity indicators ( \({a \wedge \overline{b}}\) and \({\overline{a} \wedge b}\) ) pertaining to the pair (a, b), to the ones associated with the pair (c, d). There are 120 semantically distinct logical proportions. One of them models the analogical proportion which corresponds to a statement of the form “a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logical Organization of Philosophical Concepts.Fabien Schang - forthcoming - Topoi:1-13.
    It is argued that the theory of opposition is in position to contribute as a formal method of conceptual engineering, by means of an increasing dichotomy-making process that augments the number of elements into any structured lexical field. After recalling the roots of this theory and its logical tenets, it is shown how the processes of expansion and contraction of discourse can modify a lexical field and, with it, our collective representation of ideas. This theory can also bring some order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantifying Statements (Why ‘Every Thing’ is Not ‘Everything’, Among Other ‘Thing’s).Fabien Schang - 2024 - Logica Universalis 18 (1):185-207.
    The present paper wants to develop a formal semantics about a special class of formulas: quantifying statements, which are a kind of predicative statements where both subject- and predicate terms are quantifier expressions like ‘everything’, ‘something’, and ‘nothing’. After showing how talking about nothingness makes sense despite philosophical objections, I contend that there are two sorts of meaning in phrases including ‘thing’, viz. as an individual (e.g. ‘some thing’) or as a property (e.g. ‘something’). Then I display two kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structures of Opposition and Comparisons: Boolean and Gradual Cases.Didier Dubois, Henri Prade & Agnès Rico - 2020 - Logica Universalis 14 (1):115-149.
    This paper first investigates logical characterizations of different structures of opposition that extend the square of opposition in a way or in another. Blanché’s hexagon of opposition is based on three disjoint sets. There are at least two meaningful cubes of opposition, proposed respectively by two of the authors and by Moretti, and pioneered by philosophers such as J. N. Keynes, W. E. Johnson, for the former, and H. Reichenbach for the latter. These cubes exhibit four and six squares of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Hexagon of Opposition for the Theism/Atheism Debate.Lorenz Demey - 2019 - Philosophia 47 (2):387-394.
    Burgess-Jackson has recently suggested that the debate between theism and atheism can be represented by means of a classical square of opposition. However, in light of the important role that the position of agnosticism plays in Burgess-Jackson’s analysis, it is quite surprising that this position is not represented in the proposed square of opposition. I therefore argue that the square of opposition should be extended to a slightly larger, more complex Aristotelian diagram, viz., a hexagon of opposition. Since this hexagon (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation