Switch to: References

Add citations

You must login to add citations.
  1. A Hierarchy of Classical and Paraconsistent Logics.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - 2020 - Journal of Philosophical Logic 49 (1):93-120.
    In this article, we will present a number of technical results concerning Classical Logic, ST and related systems. Our main contribution consists in offering a novel identity criterion for logics in general and, therefore, for Classical Logic. In particular, we will firstly generalize the ST phenomenon, thereby obtaining a recursively defined hierarchy of strict-tolerant systems. Secondly, we will prove that the logics in this hierarchy are progressively more classical, although not entirely classical. We will claim that a logic is to (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Epimorphisms, Definability and Cardinalities.T. Moraschini, J. G. Raftery & J. J. Wannenburg - 2020 - Studia Logica 108 (2):255-275.
    We characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures. This allows us to strengthen a result of Bacsich, as follows: in any prevariety having at most \ non-logical symbols and an axiomatization requiring at most \ variables, if the epimorphisms into structures with at most \ elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable ‘bridge theorems’, matching the surjectivity of all epimorphisms in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What is a Paraconsistent Logic?Damian Szmuc, Federico Pailos & Eduardo Barrio - 2018 - In Walter Carnielli & Jacek Malinowski (eds.), Contradictions, from Consistency to Inconsistency. Cham, Switzerland: Springer.
    Paraconsistent logics are logical systems that reject the classical principle, usually dubbed Explosion, that a contradiction implies everything. However, the received view about paraconsistency focuses only the inferential version of Explosion, which is concerned with formulae, thereby overlooking other possible accounts. In this paper, we propose to focus, additionally, on a meta-inferential version of Explosion, i.e. which is concerned with inferences or sequents. In doing so, we will offer a new characterization of paraconsistency by means of which a logic is (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Variations on intra-theoretical logical pluralism: internal versus external consequence.Bogdan Dicher - 2020 - Philosophical Studies 177 (3):667-686.
    Intra-theoretical logical pluralism is a form of meaning-invariant pluralism about logic, articulated recently by Hjortland :355–373, 2013). This version of pluralism relies on it being possible to define several distinct notions of provability relative to the same logical calculus. The present paper picks up and explores this theme: How can a single logical calculus express several different consequence relations? The main hypothesis articulated here is that the divide between the internal and external consequence relations in Gentzen systems generates a form (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Logical Consequence and the Paradoxes.Edwin Mares & Francesco Paoli - 2014 - Journal of Philosophical Logic 43 (2-3):439-469.
    We group the existing variants of the familiar set-theoretical and truth-theoretical paradoxes into two classes: connective paradoxes, which can in principle be ascribed to the presence of a contracting connective of some sort, and structural paradoxes, where at most the faulty use of a structural inference rule can possibly be blamed. We impute the former to an equivocation over the meaning of logical constants, and the latter to an equivocation over the notion of consequence. Both equivocation sources are tightly related, (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Metainferences from a Proof-Theoretic Perspective, and a Hierarchy of Validity Predicates.Rea Golan - 2022 - Journal of Philosophical Logic 51 (6):1295–1325.
    I explore, from a proof-theoretic perspective, the hierarchy of classical and paraconsistent logics introduced by Barrio, Pailos and Szmuc in (Journal o f Philosophical Logic,49, 93-120, 2021). First, I provide sequent rules and axioms for all the logics in the hierarchy, for all inferential levels, and establish soundness and completeness results. Second, I show how to extend those systems with a corresponding hierarchy of validity predicates, each one of which is meant to capture “validity” at a different inferential level. Then, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)The original sin of proof-theoretic semantics.Francesco Paoli & Bogdan Dicher - 2018 - Synthese 198 (1):615-640.
    Proof-theoretic semantics is an alternative to model-theoretic semantics. It aims at explaining the meaning of the logical constants in terms of the inference rules that govern their behaviour in proofs. We argue that this must be construed as the task of explaining these meanings relative to a logic, i.e., to a consequence relation. Alas, there is no agreed set of properties that a relation must have in order to qualify as a consequence relation. Moreover, the association of a consequence relation (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Logics of variable inclusion and the lattice of consequence relations.Michele Pra Baldi - 2020 - Journal of Applied Non-Classical Logics 30 (4):367-381.
    In this paper, first, we determine the number of sublogics of variable inclusion of an arbitrary finitary logic ⊢ with a composition term. Then, we investigate their position into the lattice of co...
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (Meta)inferential levels of entailment beyond the Tarskian paradigm.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - 2019 - Synthese 198 (S22):5265-5289.
    In this paper we discuss the extent to which the very existence of substructural logics puts the Tarskian conception of logical systems in jeopardy. In order to do this, we highlight the importance of the presence of different levels of entailment in a given logic, looking not only at inferences between collections of formulae but also at inferences between collections of inferences—and more. We discuss appropriate refinements or modifications of the usual Tarskian identity criterion for logical systems, and propose an (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Update to “A Survey of Abstract Algebraic Logic”.Josep Maria Font, Ramon Jansana & Don Pigozzi - 2009 - Studia Logica 91 (1):125-130.
    A definition and some inaccurate cross-references in the paper A Survey of Abstract Algebraic Logic, which might confuse some readers, are clarified and corrected; a short discussion of the main one is included. We also update a dozen of bibliographic references.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Substructural Gentzen Calculus for Orthomodular Quantum Logic.Davide Fazio, Antonio Ledda, Francesco Paoli & Gavin St John - 2023 - Review of Symbolic Logic 16 (4):1177-1198.
    We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empty Logics.Federico Pailos - 2021 - Journal of Philosophical Logic 51 (6):1387-1415.
    _T__S_ is a logic that has no valid inferences. But, could there be a logic without valid metainferences? We will introduce _T__S_ _ω_, a logic without metainferential validities. Notwithstanding, _T__S_ _ω_ is not as empty—i.e., uninformative—as it gets, because it has many antivalidities. We will later introduce the two-standard logic [_T__S_ _ω_, _S__T_ _ω_ ], a logic without validities and antivalidities. Nevertheless, [_T__S_ _ω_, _S__T_ _ω_ ] is still informative, because it has many contingencies. The three-standard logic [ \(\mathbf {TS}_{\omega (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Requiem for logical nihilism, or: Logical nihilism annihilated.Bogdan Dicher - 2020 - Synthese 198 (8):7073-7096.
    Logical nihilism is the view that the relation of logical consequence is empty: there are counterexamples to any putative logical law. In this paper, I argue that the nihilist threat is illusory. The nihilistic arguments do not work. Moreover, the entire project is based on a misguided interpretation of the generality of logic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The original sin of proof-theoretic semantics.Bogdan Dicher & Francesco Paoli - 2020 - Synthese:1-26.
    Proof-theoretic semantics is an alternative to model-theoretic semantics. It aims at explaining the meaning of the logical constants in terms of the inference rules that govern their behaviour in proofs. We argue that this must be construed as the task of explaining these meanings relative to a logic, i.e., to a consequence relation. Alas, there is no agreed set of properties that a relation must have in order to qualify as a consequence relation. Moreover, the association of a consequence relation (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Is multiset consequence trivial?Petr Cintula & Francesco Paoli - 2016 - Synthese 199 (Suppl 3):741-765.
    Dave Ripley has recently argued against the plausibility of multiset consequence relations and of contraction-free approaches to paradox. For Ripley, who endorses a nontransitive theory, the best arguments that buttress transitivity also push for contraction—whence it is wiser for the substructural logician to go nontransitive from the start. One of Ripley’s allegations is especially insidious, since it assumes the form of a trivialisation result: it is shown that if a multiset consequence relation can be associated to a closure operator in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The semantic isomorphism theorem in abstract algebraic logic.Tommaso Moraschini - 2016 - Annals of Pure and Applied Logic 167 (12):1298-1331.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • M-Sets and the Representation Problem.Josep Maria Font & Tommaso Moraschini - 2015 - Studia Logica 103 (1):21-51.
    The “representation problem” in abstract algebraic logic is that of finding necessary and sufficient conditions for a structure, on a well defined abstract framework, to have the following property: that for every structural closure operator on it, every structural embedding of the expanded lattice of its closed sets into that of the closed sets of another structural closure operator on another similar structure is induced by a structural transformer between the base structures. This question arose from Blok and Jónsson abstract (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relevant Consequence Relations: An Invitation.Guillermo Badia, Libor Běhounek, Petr Cintula & Andrew Tedder - 2024 - Review of Symbolic Logic 17 (3):762-792.
    We generalize the notion of consequence relation standard in abstract treatments of logic to accommodate intuitions of relevance. The guiding idea follows the use criterion, according to which in order for some premises to have some conclusion(s) as consequence(s), the premises must each be used in some way to obtain the conclusion(s). This relevance intuition turns out to require not just a failure of monotonicity, but also a move to considering consequence relations as obtaining between multisets. We motivate and state (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coproduct and Amalgamation of Deductive Systems by Means of Ordered Algebras.Ciro Russo - 2022 - Logica Universalis 16 (1):355-380.
    We propose various methods for combining or amalgamating propositional languages and deductive systems. We make heavy use of quantales and quantale modules in the wake of previous works by the present and other authors. We also describe quite extensively the relationships among the algebraic and order-theoretic constructions and the corresponding ones based on a purely logical approach.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Order algebraizable logics.James G. Raftery - 2013 - Annals of Pure and Applied Logic 164 (3):251-283.
    This paper develops an order-theoretic generalization of Blok and Pigozziʼs notion of an algebraizable logic. Unavoidably, the ordered model class of a logic, when it exists, is not unique. For uniqueness, the definition must be relativized, either syntactically or semantically. In sentential systems, for instance, the order algebraization process may be required to respect a given but arbitrary polarity on the signature. With every deductive filter of an algebra of the pertinent type, the polarity associates a reflexive and transitive relation (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • An order-theoretic analysis of interpretations among propositional deductive systems.Ciro Russo - 2013 - Annals of Pure and Applied Logic 164 (2):112-130.
    In this paper we study interpretations and equivalences of propositional deductive systems by using a quantale-theoretic approach introduced by Galatos and Tsinakis. Our aim is to provide a general order-theoretic framework which is able to describe and characterize both strong and weak forms of interpretations among propositional deductive systems also in the cases where the systems have different underlying languages.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Introduction.Josep Maria Font & Ramon Jansana - 2013 - Studia Logica 101 (4):647-650.
    Download  
     
    Export citation  
     
    Bookmark  
  • Equivalence of consequence relations: an order-theoretic and categorical perspective.Nikolaos Galatos & Constantine Tsinakis - 2009 - Journal of Symbolic Logic 74 (3):780-810.
    Equivalences and translations between consequence relations abound in logic. The notion of equivalence can be defined syntactically, in terms of translations of formulas, and order-theoretically, in terms of the associated lattices of theories. W. Blok and D. Pigozzi proved in [4] that the two definitions coincide in the case of an algebraizable sentential deductive system. A refined treatment of this equivalence was provided by W. Blok and B. Jónsson in [3]. Other authors have extended this result to the cases of (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Ask not what bilateralist intuitionists can do for Cut, but what Cut can do for bilateralist intuitionism.Bogdan Dicher - forthcoming - Analysis.
    On a bilateralist reading, sequents are interpreted as statements to the effect that, given the assertion of the antecedent it is incoherent to deny the succedent. This interpretation goes against its own ecumenical ambitions, endowing Cut with a meaning very close to that of tertium non datur and thus rendering it intuitionistically unpalatable. This paper explores a top-down route for arguing that, even intuitionistically, a prohibition to deny is as strong as a licence to assert.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the complexity of the Leibniz hierarchy.Tommaso Moraschini - 2019 - Annals of Pure and Applied Logic 170 (7):805-824.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A fully classical truth theory characterized by substructural means.Federico Matías Pailos - 2020 - Review of Symbolic Logic 13 (2):249-268.
    We will present a three-valued consequence relation for metainferences, called CM, defined through ST and TS, two well known substructural consequence relations for inferences. While ST recovers every classically valid inference, it invalidates some classically valid metainferences. While CM works as ST at the inferential level, it also recovers every classically valid metainference. Moreover, CM can be safely expanded with a transparent truth predicate. Nevertheless, CM cannot recapture every classically valid meta-metainference. We will afterwards develop a hierarchy of consequence relations (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Countably Many Weakenings of Belnap–Dunn Logic.Minghui Ma & Yuanlei Lin - 2020 - Studia Logica 108 (2):163-198.
    Every Berman’s variety \ which is the subvariety of Ockham algebras defined by the equation \ and \) determines a finitary substitution invariant consequence relation \. A sequent system \ is introduced as an axiomatization of the consequence relation \. The system \ is characterized by a single finite frame \ under the frame semantics given for the formal language. By the duality between frames and algebras, \ can be viewed as a \-valued logic as it is characterized by a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Willem Blok's Contribution to Abstract Algebraic Logic.Ramon Jansana - 2006 - Studia Logica 83 (1-3):31-48.
    Willem Blok was one of the founders of the field Abstract Algebraic Logic. The paper describes his research in this field.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Beth Property in Algebraic Logic.W. J. Blok & Eva Hoogland - 2006 - Studia Logica 83 (1-3):49-90.
    The present paper is a study in abstract algebraic logic. We investigate the correspondence between the metalogical Beth property and the algebraic property of surjectivity of epimorphisms. It will be shown that this correspondence holds for the large class of equivalential logics. We apply our characterization theorem to relevance logics and many-valued logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL.Nikolaos Galatos & Hiroakira Ono - 2006 - Studia Logica 83 (1-3):279-308.
    Substructural logics have received a lot of attention in recent years from the communities of both logic and algebra. We discuss the algebraization of substructural logics over the full Lambek calculus and their connections to residuated lattices, and establish a weak form of the deduction theorem that is known as parametrized local deduction theorem. Finally, we study certain interpolation properties and explain how they imply the amalgamation property for certain varieties of residuated lattices.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Contextual Deduction Theorems.J. G. Raftery - 2011 - Studia Logica 99 (1-3):279-319.
    Logics that do not have a deduction-detachment theorem (briefly, a DDT) may still possess a contextual DDT —a syntactic notion introduced here for arbitrary deductive systems, along with a local variant. Substructural logics without sentential constants are natural witnesses to these phenomena. In the presence of a contextual DDT, we can still upgrade many weak completeness results to strong ones, e.g., the finite model property implies the strong finite model property. It turns out that a finitary system has a contextual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Proof Theory of Paraconsistent Weak Kleene Logic.Francesco Paoli & Michele Pra Baldi - 2020 - Studia Logica 108 (4):779-802.
    Paraconsistent Weak Kleene Logic is the 3-valued propositional logic defined on the weak Kleene tables and with two designated values. Most of the existing proof systems for PWK are characterised by the presence of linguistic restrictions on some of their rules. This feature can be seen as a shortcoming. We provide a cut-free calculus for PWK that is devoid of such provisos. Moreover, we introduce a Priest-style tableaux calculus for PWK.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Admissible Rules and the Leibniz Hierarchy.James G. Raftery - 2016 - Notre Dame Journal of Formal Logic 57 (4):569-606.
    This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and significance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the nonalgebraizable fragments of relevance logic are considered.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Correspondences between Gentzen and Hilbert Systems.J. G. Raftery - 2006 - Journal of Symbolic Logic 71 (3):903 - 957.
    Most Gentzen systems arising in logic contain few axiom schemata and many rule schemata. Hilbert systems, on the other hand, usually contain few proper inference rules and possibly many axioms. Because of this, the two notions tend to serve different purposes. It is common for a logic to be specified in the first instance by means of a Gentzen calculus, whereupon a Hilbert-style presentation ‘for’ the logic may be sought—or vice versa. Where this has occurred, the word ‘for’ has taken (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Intuitionistic Logic is a Connexive Logic.Davide Fazio, Antonio Ledda & Francesco Paoli - 2023 - Studia Logica 112 (1):95-139.
    We show that intuitionistic logic is deductively equivalent to Connexive Heyting Logic ($$\textrm{CHL}$$ CHL ), hereby introduced as an example of a strongly connexive logic with an intuitive semantics. We use the reverse algebraisation paradigm: $$\textrm{CHL}$$ CHL is presented as the assertional logic of a point regular variety (whose structure theory is examined in detail) that turns out to be term equivalent to the variety of Heyting algebras. We provide Hilbert-style and Gentzen-style proof systems for $$\textrm{CHL}$$ CHL ; moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Infinite Family of Finite-Valued Paraconsistent Algebraizable Logics.Hugo Albuquerque & Carlos Caleiro - forthcoming - Studia Logica:1-28.
    We present a new infinite family of finite-valued paraconsistent logics—whose _n_-th member we call _Sette’s logic of order_ _n_ and denote by \({\mathscr {S}}_n\) —all of which extending da Costa’s logic \({\mathscr {C}}_1\) and extended by classical logic \(\mathcal {C\!\hspace{0.0pt}L}\). We classify the family \(\{ {\mathscr {S}}_n: n \ge 2 \}\) within the Leibniz hierarchy by proving that all its members are finitely algebraizable. We also prove a completeness theorem for each logic \({\mathscr {S}}_n\) wrt. a single logical matrix and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Correction to: Variations on intra-theoretical logical pluralism: internal versus external consequence.Bogdan Dicher - 2020 - Philosophical Studies 177 (3):687-687.
    In the original publication of the article, in Definition 4, the sixth line which reads as.
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond Rasiowa's Algebraic Approach to Non-classical Logics.Josep Maria Font - 2006 - Studia Logica 82 (2):179-209.
    This paper reviews the impact of Rasiowa's well-known book on the evolution of algebraic logic during the last thirty or forty years. It starts with some comments on the importance and influence of this book, highlighting some of the reasons for this influence, and some of its key points, mathematically speaking, concerning the general theory of algebraic logic, a theory nowadays called Abstract Algebraic Logic. Then, a consideration of the diverse ways in which these key points can be generalized allows (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Representations of structural closure operators.José Gil-Férez - 2011 - Archive for Mathematical Logic 50 (1-2):45-73.
    We continue the work of Blok and Jónsson by developing the theory of structural closure operators and introducing the notion of a representation between them. Similarities and equivalences of Blok-Jónsson turn out to be bijective representations and bijective structural representations, respectively. We obtain a characterization for representations induced by a transformer. In order to obtain a similar characterization for structural representations we introduce the notions of a graduation and a graded variable of an M-set. We show that several deductive systems, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A New Hierarchy of Infinitary Logics in Abstract Algebraic Logic.Carles Noguera & Tomáš Lávička - 2017 - Studia Logica 105 (3):521-551.
    In this article we investigate infinitary propositional logics from the perspective of their completeness properties in abstract algebraic logic. It is well-known that every finitary logic is complete with respect to its relatively subdirectly irreducible models. We identify two syntactical notions formulated in terms of intersection-prime theories that follow from finitarity and are sufficient conditions for the aforementioned completeness properties. We construct all the necessary counterexamples to show that all these properties define pairwise different classes of logics. Consequently, we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Birkhoff’s and Mal’cev’s Theorems for Implicational Tonoid Logics.Eunsuk Yang - 2023 - Studia Logica 111 (3):501-519.
    In the context of implicational tonoid logics, this paper investigates analogues of Birkhoff’s two theorems, the so-called subdirect representation and varieties theorems, and of Mal’cev’s quasi-varieties theorem. More precisely, we first recall the class of implicational tonoid logics. Next, we establish the subdirect product representation theorem for those logics and then consider some more related results such as completeness. Thirdly, we consider the varieties theorem for them. Finally, we introduce an analogue of Mal’cev’s quasi-varieties theorem for algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Abstract Approach to Consequence Relations.Petr Cintula, José Gil-férez, Tommaso Moraschini & Francesco Paoli - 2019 - Review of Symbolic Logic 12 (2):331-371.
    We generalise the Blok–Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariablyaggregatedvia set-theoretical union. Our approach is more general in that nonidempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A logical and algebraic characterization of adjunctions between generalized quasi-varieties.Tommaso Moraschini - 2018 - Journal of Symbolic Logic 83 (3):899-919.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Algebraizability of the Implicational Fragment of Abelian Logic.Sam Butchart & Susan Rogerson - 2014 - Studia Logica 102 (5):981-1001.
    In this paper we consider the implicational fragment of Abelian logic \ . We show that although the Abelian groups provide an semantics for the set of theorems of \ they do not for the associated consequence relation. We then show that the consequence relation is not algebraizable in the sense of Blok and Pigozzi . In the second part of the paper, we investigate an extension of \ in the same language and having the same set of theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations