Switch to: References

Add citations

You must login to add citations.
  1. The logics of a universal language.Eduardo Alejandro Barrio & Edson Bezerra - 2024 - Asian Journal of Philosophy 3 (1):1-22.
    Semantic paradoxes pose a real threat to logics that attempt to be capable of expressing their own semantic concepts. Particularly, Curry paradoxes seem to show that many solutions must change our intuitive concepts of truth or validity or impose limits on certain inferences that are intuitively valid. In this way, the logic of a universal language would have serious problems. In this paper, we explore a different solution that tries to avoid both limitations as much as possible. Thus, we argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragility and Strength.Teodor-Tiberiu Călinoiu & Daniele Bruno Garancini - forthcoming - Analysis.
    It is customarily assumed that paracomplete and paraconsistent solutions to liar paradoxes require a logical system weaker than classical logic. That is, if a logic is not fragile to liar paradoxes, it must be logically weaker than classical logic. Defenders of classical logic argue that the losses of weakening it outweigh the gains. Advocates of paracomplete and paraconsistent solutions disagree. We articulate the notion of fragility with respect to the liar paradox and show that it can be disentangled from logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inferential Constants.Camillo Fiore, Federico Pailos & Mariela Rubin - 2022 - Journal of Philosophical Logic 52 (3):767-796.
    A metainference is usually understood as a pair consisting of a collection of inferences, called premises, and a single inference, called conclusion. In the last few years, much attention has been paid to the study of metainferences—and, in particular, to the question of what are the valid metainferences of a given logic. So far, however, this study has been done in quite a poor language. Our usual sequent calculi have no way to represent, e.g. negations, disjunctions or conjunctions of inferences. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)One Step is Enough.David Ripley - 2022 - Journal of Philosophical Logic 51 (6):1233-1259.
    The recent development and exploration of mixed metainferential logics is a breakthrough in our understanding of nontransitive and nonreflexive logics. Moreover, this exploration poses a new challenge to theorists like me, who have appealed to similarities to classical logic in defending the logic ST, since some mixed metainferential logics seem to bear even more similarities to classical logic than ST does. There is a whole ST-based hierarchy, of which ST itself is only the first step, that seems to become more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A truth-maker semantics for ST: refusing to climb the strict/tolerant hierarchy.Ulf Hlobil - 2022 - Synthese 200 (5):1-23.
    The paper presents a truth-maker semantics for Strict/Tolerant Logic (ST), which is the currently most popular logic among advocates of the non-transitive approach to paradoxes. Besides being interesting in itself, the truth-maker presentation of ST offers a new perspective on the recently discovered hierarchy of meta-inferences that, according to some, generalizes the idea behind ST. While fascinating from a mathematical perspective, there is no agreement on the philosophical significance of this hierarchy. I aim to show that there is no clear (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sequent-Calculi for Metainferential Logics.Bruno Da Ré & Federico Pailos - 2021 - Studia Logica 110 (2):319-353.
    In recent years, some theorists have argued that the clogics are not only defined by their inferences, but also by their metainferences. In this sense, logics that coincide in their inferences, but not in their metainferences were considered to be different. In this vein, some metainferential logics have been developed, as logics with metainferences of any level, built as hierarchies over known logics, such as \, and \. What is distinctive of these metainferential logics is that they are mixed, i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Empty Logics.Federico Pailos - 2021 - Journal of Philosophical Logic 51 (6):1387-1415.
    _T__S_ is a logic that has no valid inferences. But, could there be a logic without valid metainferences? We will introduce _T__S_ _ω_, a logic without metainferential validities. Notwithstanding, _T__S_ _ω_ is not as empty—i.e., uninformative—as it gets, because it has many antivalidities. We will later introduce the two-standard logic [_T__S_ _ω_, _S__T_ _ω_ ], a logic without validities and antivalidities. Nevertheless, [_T__S_ _ω_, _S__T_ _ω_ ] is still informative, because it has many contingencies. The three-standard logic [ \(\mathbf {TS}_{\omega (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Metainferences from a Proof-Theoretic Perspective, and a Hierarchy of Validity Predicates.Rea Golan - 2022 - Journal of Philosophical Logic 51 (6):1295–1325.
    I explore, from a proof-theoretic perspective, the hierarchy of classical and paraconsistent logics introduced by Barrio, Pailos and Szmuc in (Journal o f Philosophical Logic,49, 93-120, 2021). First, I provide sequent rules and axioms for all the logics in the hierarchy, for all inferential levels, and establish soundness and completeness results. Second, I show how to extend those systems with a corresponding hierarchy of validity predicates, each one of which is meant to capture “validity” at a different inferential level. Then, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Hierarchy of Classical and Paraconsistent Logics.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - 2020 - Journal of Philosophical Logic 49 (1):93-120.
    In this article, we will present a number of technical results concerning Classical Logic, ST and related systems. Our main contribution consists in offering a novel identity criterion for logics in general and, therefore, for Classical Logic. In particular, we will firstly generalize the ST phenomenon, thereby obtaining a recursively defined hierarchy of strict-tolerant systems. Secondly, we will prove that the logics in this hierarchy are progressively more classical, although not entirely classical. We will claim that a logic is to (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Higher-Level Paradoxes and Substructural Solutions.Rashed Ahmad - forthcoming - Studia Logica:1-25.
    There have been recent arguments against the idea that substructural solutions are uniform. The claim is that even if the substructuralist solves the common semantic paradoxes uniformly by targeting Cut or Contraction, with additional machinery, we can construct higher-level paradoxes (e.g., a higher-level Liar, a higher-level Curry, and a meta-validity Curry). These higher-level paradoxes do not use metainferential Cut or Contraction, but rather, higher-level Cuts and higher-level Contractions. These kinds of paradoxes suggest that targeting Cut or Contraction is not enough (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Translating Metainferences Into Formulae: Satisfaction Operators and Sequent Calculi.Ariel Jonathan Roffé & Federico Pailos - 2021 - Australasian Journal of Logic 3.
    In this paper, we present a way to translate the metainferences of a mixed metainferential system into formulae of an extended-language system, called its associated σ-system. To do this, the σ-system will contain new operators (one for each standard), called the σ operators, which represent the notions of "belonging to a (given) standard". We first prove, in a model-theoretic way, that these translations preserve (in)validity. That is, that a metainference is valid in the base system if and only if its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Metainferential Reasoning on Strong Kleene Models.Andreas Fjellstad - 2021 - Journal of Philosophical Logic 51 (6):1327-1344.
    Barrio et al. (_Journal of Philosophical Logic_, _49_(1), 93–120, 2020 ) and Pailos (_Review of Symbolic Logic_, _2020_(2), 249–268, 2020 ) develop an approach to define various metainferential hierarchies on strong Kleene models by transferring the idea of distinct standards for premises and conclusions from inferences to metainferences. In particular, they focus on a hierarchy named the \(\mathbb {S}\mathbb {T}\) -hierarchy where the inferential logic at the bottom of the hierarchy is the non-transitive logic ST but where each subsequent metainferential (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Classical Logic and the Strict Tolerant Hierarchy.Chris Scambler - 2020 - Journal of Philosophical Logic 49 (2):351-370.
    In their recent article “A Hierarchy of Classical and Paraconsistent Logics”, Eduardo Barrio, Federico Pailos and Damien Szmuc present novel and striking results about meta-inferential validity in various three valued logics. In the process, they have thrown open the door to a hitherto unrecognized domain of non-classical logics with surprising intrinsic properties, as well as subtle and interesting relations to various familiar logics, including classical logic. One such result is that, for each natural number n, there is a logic which (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Supervaluations and the Strict-Tolerant Hierarchy.Brian Porter - 2021 - Journal of Philosophical Logic 51 (6):1367-1386.
    In a recent paper, Barrio, Pailos and Szmuc (BPS) show that there are logics that have exactly the validities of classical logic up to arbitrarily high levels of inference. They suggest that a logic therefore must be identified by its valid inferences at every inferential level. However, Scambler shows that there are logics with all the validities of classical logic at every inferential level, but with no antivalidities at any inferential level. Scambler concludes that in order to identify a logic, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)One Step is Enough.David Ripley - 2021 - Journal of Philosophical Logic 51 (6):1-27.
    The recent development and exploration of mixed metainferential logics is a breakthrough in our understanding of nontransitive and nonreflexive logics. Moreover, this exploration poses a new challenge to theorists like me, who have appealed to similarities to classical logic in defending the logic ST, since some mixed metainferential logics seem to bear even more similarities to classical logic than ST does. There is a whole ST-based hierarchy, of which ST itself is only the first step, that seems to become more (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Validities, antivalidities and contingencies: A multi-standard approach.Eduardo Barrio & Federico Pailos - 2021 - Journal of Philosophical Logic 51 (1):75-98.
    It is widely accepted that classical logic is trivialized in the presence of a transparent truth-predicate. In this paper, we will explain why this point of view must be given up. The hierarchy of metainferential logics defined in Barrio et al. and Pailos recovers classical logic, either in the sense that every classical inferential validity is valid at some point in the hierarchy ), or because a logic of a transfinite level defined in terms of the hierarchy shares its validities (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A cut-free modal theory of consequence.Edson Bezerra - 2025 - Asian Journal of Philosophy 4 (1):1-21.
    The cut-free validity theory $$\textsf{STV}$$ proposed by Barrio, Rosenblatt, and Tajer suffers from incompleteness with respect to its object language validity predicate. The validity predicate of $$\textsf{STV}$$ fails in validating some valid inferences of its underlying logic, the Strict Tolerant logic $$\textsf{ST}$$. In this paper, we will present the non-normal modal logic $$\textsf{ST}^{\Box \Diamond }$$ whose modalities $$\Box $$ and $$\Diamond $$ capture the tautologies/valid inferences and the consistent formulas of the logic $$\textsf{ST}$$, respectively. We show that $$\textsf{ST}^{\Box \Diamond }$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Editorial Introduction: Substructural Logics and Metainferences.Eduardo Barrio & Paul Égré - 2022 - Journal of Philosophical Logic 51 (6):1215-1231.
    The concept of _substructural logic_ was originally introduced in relation to limitations of Gentzen’s structural rules of Contraction, Weakening and Exchange. Recent years have witnessed the development of substructural logics also challenging the Tarskian properties of Reflexivity and Transitivity of logical consequence. In this introduction we explain this recent development and two aspects in which it leads to a reassessment of the bounds of classical logic. On the one hand, standard ways of defining the notion of logical consequence in classical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Higher-level Inferences in the Strong-Kleene Setting: A Proof-theoretic Approach.Pablo Cobreros, Elio La Rosa & Luca Tranchini - 2021 - Journal of Philosophical Logic 51 (6):1417-1452.
    Building on early work by Girard ( 1987 ) and using closely related techniques from the proof theory of many-valued logics, we propose a sequent calculus capturing a hierarchy of notions of satisfaction based on the Strong Kleene matrices introduced by Barrio et al. (Journal of Philosophical Logic 49:93–120, 2020 ) and others. The calculus allows one to establish and generalize in a very natural manner several recent results, such as the coincidence of some of these notions with their classical (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Anti-exceptionalism, truth and the BA-plan.Eduardo Alejandro Barrio, Federico Pailos & Joaquín Toranzo Calderón - 2021 - Synthese 199 (5-6):12561-12586.
    Anti-exceptionalism about logic states that logical theories have no special epistemological status. Such theories are continuous with scientific theories. Contemporary anti-exceptionalists include the semantic paradoxes as a part of the elements to accept a logical theory. Exploring the Buenos Aires Plan, the recent development of the metainferential hierarchy of ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-logics shows that there are multiple options to deal with such paradoxes. There is a whole ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the Metainferential Solution to the Semantic Paradoxes.Rea Golan - 2023 - Journal of Philosophical Logic 52 (3):797-820.
    Substructural solutions to the semantic paradoxes have been broadly discussed in recent years. In particular, according to the non-transitive solution, we have to give up the metarule of Cut, whose role is to guarantee that the consequence relation is transitive. This concession—giving up a meta rule—allows us to maintain the entire consequence relation of classical logic. The non-transitive solution has been generalized in recent works into a hierarchy of logics where classicality is maintained at more and more metainferential levels. All (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation