Switch to: References

Add citations

You must login to add citations.
  1. Hilbert-style axiomatic completion: On von Neumann and hidden variables in quantum mechanics.Chris Mitsch - 2022 - Studies in History and Philosophy of Science Part A 95 (C):84-95.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger: The origins of the principles of uncertainty and complementarity.Jagdish Mehra - 1987 - Foundations of Physics 17 (5):461-506.
    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schrödinger during 1920–1927 are treated. From the formulation of quantum mechanics in 1925–1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory—formulated in fall 1926 by Dirac, London, and Jordan—Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Intentional Observer Effects on Quantum Randomness: A Bayesian Analysis Reveals Evidence Against Micro-Psychokinesis.Markus A. Maier, Moritz C. Dechamps & Markus Pflitsch - 2018 - Frontiers in Psychology 9.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The aharonov-Bohm effect and the reality of wave packets.Chuang Liu - 1994 - British Journal for the Philosophy of Science 45 (4):977-1000.
    The objective of this paper is to show that, instead of quantum probabilities, wave packets are physically real. First, Cartwright's recent argument for the reality of quantum probabilities is criticized. Then, the notion of ‘physically real’ is precisely defined and the difference between wave functions and quantum probabilities clarified. Being thus prepared, some strong reasons are discussed for considering the wave packet to be physically real. Finding the reasons inconclusive, I explain how the Aharonov—Bohm effect delivers the final punch. I (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Causalidade e teoria quântica.Patrícia Kauark Leite - 2012 - Scientiae Studia 10 (1):165-177.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bohmian Mechanics is Not Deterministic.Klaas Landsman - 2022 - Foundations of Physics 52 (4):1-17.
    I argue that Bohmian mechanics cannot reasonably be claimed to be a deterministic theory. If one assumes the “quantum equilibrium distribution” provided by the wave function of the universe, Bohmian mechanics requires an external random oracle in order to describe the algorithmic randomness properties of typical outcome sequences of long runs of repeated identical experiments. This oracle lies beyond the scope of Bohmian mechanics, including the impossibility of explaining the randomness property in question from “random” initial conditions. Thus the advantages (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The puzzle of canonical transformations in early quantum mechanics.Jan Lacki - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):317-344.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The puzzle of canonical transformations in early quantum mechanics.Jan Lacki - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):317-344.
    The essential role of classical mechanics in the “old quantum theory” is well known. With the rise of a genuine quantum formalism, classical analogies remained a powerful heuristic tool. However, classical insights soon proved problematic, and in some cases, even counterproductive. The case of the implementation of quantum canonical transformations provides a distinguished case study for the historian studying the circumstances which led to the transformation theory of London, Dirac and Jordan. -/- The attempts to use canonical transformations in strict (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On Why Quine’s Ontological Relativity Requires Reconsideration.Zbigniew Król & Józef Lubacz - forthcoming - Foundations of Science:1-25.
    We aim to show from a new perspective that Quine’s ontological relativity, based largely on his so-called “proxy-function argument”, falls short of being a rigorously coherent philosophical conception, as it exhibits significant formal defects. This new perspective enables exposing the shortcomings of Quine's position and suggests a possible reformulation of the original position. Moreover, we argue that his ontological relativity is inconsistent with the empirical data associated with some of our best physical theories, such as quantum mechanics. We refer to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Misleading Signposts Along the de Broglie-Bohm Road to Quantum Mechanics.Michael K.-H. Kiessling - 2010 - Foundations of Physics 40 (4):418-429.
    Eighty years after de Broglie’s, and a little more than half a century after Bohm’s seminal papers, the de Broglie–Bohm theory (a.k.a. Bohmian mechanics), which is presumably the simplest theory which explains the orthodox quantum mechanics formalism, has reached an exemplary state of conceptual clarity and mathematical integrity. No other theory of quantum mechanics comes even close. Yet anyone curious enough to walk this road to quantum mechanics is soon being confused by many misleading signposts that have been put up, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Preface of the Special Issue Quantum Foundations: Theory and Experiment. [REVIEW]Andrei Khrennikov & Gregor Weihs - 2012 - Foundations of Physics 42 (6):721-724.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The causal relation as the most fundamental fact of the world. Comments on Hans Reichenbach's paper: The space problem in the new quantum mechanics.Andreas Kamlah - 1991 - Erkenntnis 35 (1-3):49 - 60.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Wave Function as Matter Density: Ontological Assumptions and Experimental Consequences.Markku Jääskeläinen - 2015 - Foundations of Physics 45 (6):591-610.
    The wavefunction is the central mathematical entity of quantum mechanics, but it still lacks a universally accepted interpretation. Much effort is spent on attempts to probe its fundamental nature. Here I investigate the consequences of a matter ontology applied to spherical masses of constant bulk density. The governing equation for the center-of-mass wavefunction is derived and solved numerically. The ground state wavefunctions and resulting matter densities are investigated. A lowering of the density from its bulk value is found for low (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle. Part one.Michel Janssen & Anthony Duncan - 2007 - Archive for History of Exact Sciences 61 (6):553-624.
    In October 1924, The Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Using Bohr’s correspondence principle and Einstein’s quantum theory of radiation along with advanced techniques from classical mechanics, Van Vleck showed that quantum formulae for emission, absorption, and dispersion of radiation merge with their classical counterparts in the limit of high quantum numbers. For modern readers Van Vleck’s paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Born Rule and Time-Reversal Symmetry of Quantum Equations of Motion.Aleksey V. Ilyin - 2016 - Foundations of Physics 46 (7):845-851.
    It was repeatedly underlined in literature that quantum mechanics cannot be considered a closed theory if the Born Rule is postulated rather than derived from the first principles. In this work the Born Rule is derived from the time-reversal symmetry of quantum equations of motion. The derivation is based on a simple functional equation that takes into account properties of probability, as well as the linearity and time-reversal symmetry of quantum equations of motion. The derivation presented in this work also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fast Vacuum Fluctuations and the Emergence of Quantum Mechanics.Gerard ’T. Hooft - 2021 - Foundations of Physics 51 (3):1-24.
    Fast moving classical variables can generate quantum mechanical behavior. We demonstrate how this can happen in a model. The key point is that in classically evolving systems one can still define a conserved quantum energy. For the fast variables, the energy levels are far separated, such that one may assume these variables to stay in their ground state. This forces them to be entangled, so that, consequently, the slow variables are entangled as well. The fast variables could be the vacuum (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the limitations and promise of quantum theory for comprehension of human knowledge and consciousness.Carl S. Helrich - 2006 - Zygon 41 (3):543-566.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relaxation to Quantum Equilibrium and the Born Rule in Nelson’s Stochastic Dynamics.Vincent Hardel, Paul-Antoine Hervieux & Giovanni Manfredi - 2023 - Foundations of Physics 53 (6):1-28.
    Nelson’s stochastic quantum mechanics provides an ideal arena to test how the Born rule is established from an initial probability distribution that is not identical to the square modulus of the wavefunction. Here, we investigate numerically this problem for three relevant cases: a double-slit interference setup, a harmonic oscillator, and a quantum particle in a uniform gravitational field. For all cases, Nelson’s stochastic trajectories are initially localized at a definite position, thereby violating the Born rule. For the double slit and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consistent quantum measurements.Robert B. Griffiths - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):188-197.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A consistent quantum ontology.Robert B. Griffiths - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):93-114.
    The histories interpretation provides a consistent realistic ontology for quantum mechanics, based on two main ideas. First, a logic is employed which is compatible with the Hilbert-space structure of quantum mechanics as understood by von Neumann: quantum properties and their negations correspond to subspaces and their orthogonal complements. It employs a special syntactical rule to construct meaningful quantum expressions, quite different from the quantum logic of Birkhoff and von Neumann. Second, quantum time development is treated as an inherently stochastic process (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • ‘Physics is a kind of metaphysics’: Émile Meyerson and Einstein’s late rationalistic realism.Marco Giovanelli - unknown - European Journal for Philosophy of Science 8 (3):783-829.
    Gerald Holton has famously described Einstein’s career as a philosophical “pilgrimage”. Starting on “the historic ground” of Machian positivism and phenomenalism, following the completion of general relativity in late 1915, Einstein’s philosophy endured (a) a speculative turn: physical theorizing appears as ultimately a “pure mathematical construction” guided by faith in the simplicity of nature and (b) a realistic turn: science is “nothing more than a refinement ”of the everyday belief in the existence of mind-independent physical reality. Nevertheless, Einstein’s mathematical constructivism (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • ‘…But I still can׳t get rid of a sense of artificiality’: The Reichenbach–Einstein debate on the geometrization of the electromagnetic field.Marco Giovanelli - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54:35-51.
    This paper analyzes correspondence between Reichenbach and Einstein from the spring of 1926, concerning what it means to ‘geometrize’ a physical field. The content of a typewritten note that Reichenbach sent to Einstein on that occasion is reconstructed, showing that it was an early version of §49 of the untranslated Appendix to his Philosophie der Raum-Zeit-Lehre, on which Reichenbach was working at the time. This paper claims that the toy-geometrization of the electromagnetic field that Reichenbach presented in his note should (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Operator calculus: the lost formulation of quantum mechanics.Gonzalo Gimeno, Mercedes Xipell & Marià Baig - 2020 - Archive for History of Exact Sciences 75 (3):283-322.
    Traditionally, “the operator calculus of Born and Wiener” has been considered one of the four formulations of quantum mechanics that existed in 1926. The present paper reviews the operator calculus as applied by Max Born and Norbert Wiener during the last months of 1925 and the early months of 1926 and its connections with the rise of the new quantum theory. Despite the relevance of this operator calculus, Born–Wiener’s joint contribution to the topic is generally bypassed in historical accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is an Electron a Charge Cloud? A Reexamination of Schrödinger’s Charge Density Hypothesis.Shan Gao - 2018 - Foundations of Science 23 (1):145-157.
    This article re-examines Schrödinger’s charge density hypothesis, according to which the charge of an electron is distributed in the whole space, and the charge density in each position is proportional to the modulus squared of the wave function of the electron there. It is shown that the charge distribution of a quantum system can be measured by protective measurements as expectation values of certain observables, and the results as predicted by quantum mechanics confirm Schrödinger’s original hypothesis. Moreover, the physical origin (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Towards a revised probabilistic basis for quantum mechanics.Terrence L. Fine - 1974 - Synthese 29 (1-4):187 - 201.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The analysis of particle tracks: A case for trust in the unity of physics.Brigitte Falkenburg - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):337-371.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The analysis of particle tracks: A case for trust in the unity of physics.Brigitte Falkenburg - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):337-371.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • “The language of Dirac’s theory of radiation”: the inception and initial reception of a tool for the quantum field theorist.Markus Ehberger - 2022 - Archive for History of Exact Sciences 76 (6):531-571.
    In 1927, Paul Dirac first explicitly introduced the idea that electrodynamical processes can be evaluated by decomposing them into virtual (modern terminology), energy non-conserving subprocesses. This mode of reasoning structured a lot of the perturbative evaluations of quantum electrodynamics during the 1930s. Although the physical picture connected to Feynman diagrams is no longer based on energy non-conserving transitions but on off-shell particles, emission and absorption subprocesses still remain their fundamental constituents. This article will access the introduction and the initial reception (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Experiment Paradox in Physics.Michał Eckstein & Paweł Horodecki - 2020 - Foundations of Science 27 (1):1-15.
    Modern physics is founded on two mainstays: mathematical modelling and empirical verification. These two assumptions are prerequisite for the objectivity of scientific discourse. Here we show, however, that they are contradictory, leading to the ‘experiment paradox’. We reveal that any experiment performed on a physical system is—by necessity—invasive and thus establishes inevitable limits to the accuracy of any mathematical model. We track its manifestations in both classical and quantum physics and show how it is overcome ‘in practice’ via the concept (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Alternative to the Born Rule: Spectral Quantization.Marc Dvorak - 2023 - Foundations of Physics 53 (3):1-25.
    We show that there is a hidden freedom in quantum many-body theory associated with overcompleteness of the time evolution through the single-particle subspace of a many-body system. To fix the freedom, an additional constraint is necessary. We argue that the appropriate constraint on the time evolution through the subspace is to quantize the propagation of entangled pairs of particles, represented by the single-particle spectral function, instead of individual particles. This solution method creates a surface that indicates the multiplicity of every (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From canonical transformations to transformation theory, 1926–1927: The road to Jordan's Neue Begründung.Anthony Duncan & Michel Janssen - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (4):352-362.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Note on the Quantum Mechanical Measurement Process.Michael Drieschner - 2013 - Philosophia Naturalis 50 (2):201-213.
    Traditionally one main emphasis of the quantum mechanical measurement theory is on the question how the pure state of the compound system 'measured system + measuring apparatus' is transformed into the 'mixture' of all possible results of that measurement, weighted with their probability: the so-called “disappearance of the interference terms”. It is argued in this note that in reality there is no such transformation, so that there is no need to account for such a transformation theoretically. _German_ Gewöhnlich liegt ein (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association.M. Suarez, M. Dorato & M. Redei (eds.) - 2009 - Dordrecht, Netherland: Springer.
    Download  
     
    Export citation  
     
    Bookmark  
  • The World Hologram: The Holographic Universe is Everett's Relative State - The Measurement Problem is a Category Error of Logical Type.Andrew Soltau - manuscript
    The key to the measurement problem is the entity at the heart of Everett's formulation, the state of the memory, defined as the record of observations. In humans, the integrated synthesis defines the perceptual reality, a projective, three-dimensional representation of the world. This 'world hologram' is the conscious point of view, the mind in Lockwood's interpretation, the 'phenomenal perspective'. As Everett demonstrates, the collapse dynamics operates only judged by the state of the memory; the physical observer remains in a superposed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Bohmian mechanics.Sheldon Goldstein - 2008 - Stanford Encyclopedia of Philosophy.
    Bohmian mechanics, which is also called the de Broglie-Bohm theory, the pilot-wave model, and the causal interpretation of quantum mechanics, is a version of quantum theory discovered by Louis de Broglie in 1927 and rediscovered by David Bohm in 1952. It is the simplest example of what is often called a hidden variables interpretation of quantum mechanics. In Bohmian mechanics a system of particles is described in part by its wave function, evolving, as usual, according to Schrödinger's equation. However, the (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Observer Effects on Quantum Randomness: Testing Micro-psychokinetic Effects of Smokers on Addiction-related Stimuli.Markus Andreas Maier & Moritz Christopher Dechamps - 2018 - Journal of Scientific Exploration 32 (2).
    A vivid discussion revolves around the role of the human mind in the quantum measurement process. While some authors argue that conscious observation is a necessary element to achieve the transition from quantum to classical states during measurement (Wigner, 1963), some go even further and propose a more active influence of the human mind on the probabilities of quantum measurement outcomes (e.g. Atmanspacher, Römer, & Walach, 2002; Penrose & Hameroff, 2011). This proposition was tested in micro-psychokinesis (micro-Pk) research were intentional (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A search for new physics in high-mass ditau events in the ATLAS detector.Ryan Reece - 2013 - Dissertation, University of Pennsylvania
    This thesis is a work of experimental physics, a search for new physics with the ATLAS experiment. I post this thesis on the PhilArchive because it includes a pedagogical summary of quantum mechanics and the standard model of particle physics in the combination of chapters 1-2 and appendix A. This was my attempt at the end of my PhD of giving a bird's eye view of the standard model, with a thorough bibliography of the publication trail that lead to its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Možnost, zbiljnost i kvantna mehanika.Boris Kožnjak - 2007 - Prolegomena 6 (2):223-252.
    Download  
     
    Export citation  
     
    Bookmark  
  • Loop quantum gravity in the light of neo-Kantian philosophy.Luigi Laino - 2021 - Kant E-Prints 16 (2):231-255.
    The paper surveys the possibility of keeping a neo-Kantian approach in the face of Loop Quantum Gravity. Together with a preliminary analysis of Cassirer’s re-interpretation of Kantian philosophy that allowed him to harmonize the a priori cognitions with the theory of relativity and quantum mechanics, it will focus on the distinction between constitutive and regulativea priori. In this way, the paper will suggest that despite Rovelli’s refutation of Kant’s interpretation of space and time, he seems, at least implicitly, to hold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Functions of Intution in Quantum Physics.Brigitte Falkenburg - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 267--292.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Causation, Realism, Determinism, and Probability in the Science and Philosophy of Max Born.Thomas Bunce - unknown
    In this thesis I will examine the philosophy of the physicist Max Born. As well as his scientific work, Born wrote on a number of philosophical topics: causation, realism, determinism, and probability. They appear as an interest throughout his career, but he particularly concentrates on them from the 1940s onwards. Born is a significant figure in the development of quantum mechanics whose philosophical work has been left largely unexamined. It is the aim of this thesis to elucidate and to critically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. In the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Quantum Mechanical Frame of Reference.Andrew Soltau - manuscript
    Everett demonstrates the appearance of collapse, within the context of the unitary linear dynamics. However, he does not state clearly how observers are to have determinate measurement records, hence 50 years of debate. This, however, is inherent. He defines the observer as the record of observations, which, naturally, is the record of correlations established with the physical environment. As in Rovelli's Relational Quantum Mechanics, the correlations record is the sole determinant of the effective physical environment, here the quantum mechanical frame (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Möglichkeit, Wirklichkeit und Quantenmechanik.Boris Koznjak - 2007 - Prolegomena 6 (2):223-252.
    In this paper a possible interpretative value of Aristotle’s fundamental ontological doctrine of potentiality and actuality is considered in the context of operationally undoubtedly the most successful but interpretatively still controversial theory of modern physics – quantum mechanics – especially regarding understanding the nature of the world, the phenomena of which it describes and predicts so successfully. In particular, beings of the atomic world are interpreted as real potential beings actualized by the measurement process in appropriate experimental arrangement, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mind-matter interactions and their reproducibility.Moritz Dechamps - 2019 - Dissertation, Ludwig Maximilians Universität, München
    Download  
     
    Export citation  
     
    Bookmark  
  • Violation of the Born Rule: Implications for Macroscopic Fields.Ruth Kastner - 2016 - International Journal of Quantum Foundations 2 (3).
    It is shown that violation of the Born Rule leads to a breakdown of the correspondence between the quantum electromagnetic field and its classical counterpart. Specifically, the relationship of the quantum coherent state to the classical electromagnetic field turns out to imply that if the Born Rule were violated, this could result in apparent deviations from the energy conservation law applying to the field and its sources. The result, which is fully general and independent of interpretations of quantum theory, suggests (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Protective Measurement and the Meaning of the Wave Function.Shan Gao - 2011
    This article analyzes the implications of protective measurement for the meaning of the wave function. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is not continuous but (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations