Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Logical pluralism and normativity.Stewart Shapiro & Teresa Kouri Kissel - 2020 - Inquiry: An Interdisciplinary Journal of Philosophy 63 (3-4):389-410.
    We are logical pluralists who hold that the right logic is dependent on the domain of investigation; different logics for different mathematical theories. The purpose of this article is to explore the ramifications for our pluralism concerning normativity. Is there any normative role for logic, once we give up its universality? We discuss Florian Steingerger’s “Frege and Carnap on the Normativity of Logic” as a source for possible types of normativity, and then turn to our own proposal, which postulates that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Logical pluralism and normativity.Teresa Kouri Kissel & Stewart Shapiro - 2017 - Inquiry: An Interdisciplinary Journal of Philosophy:1-22.
    We are logical pluralists who hold that the right logic is dependent on the domain of investigation; different logics for different mathematical theories. The purpose of this article is to explore the ramifications for our pluralism concerning normativity. Is there any normative role for logic, once we give up its universality? We discuss Florian Steingerger’s “Frege and Carnap on the Normativity of Logic” as a source for possible types of normativity, and then turn to our own proposal, which postulates that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Gleason's theorem is not constructively provable.Geoffrey Hellman - 1993 - Journal of Philosophical Logic 22 (2):193 - 203.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)An omniscience principle, the König Lemma and the Hahn‐Banach theorem.Hajime Ishihara - 1990 - Mathematical Logic Quarterly 36 (3):237-240.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)An omniscience principle, the König Lemma and the Hahn-Banach theorem.Hajime Ishihara - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (3):237-240.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mathematical constructivism in spacetime.Geoffrey Hellman - 1998 - British Journal for the Philosophy of Science 49 (3):425-450.
    To what extent can constructive mathematics based on intuitionistc logic recover the mathematics needed for spacetime physics? Certain aspects of this important question are examined, both technical and philosophical. On the technical side, order, connectivity, and extremization properties of the continuum are reviewed, and attention is called to certain striking results concerning causal structure in General Relativity Theory, in particular the singularity theorems of Hawking and Penrose. As they stand, these results appear to elude constructivization. On the philosophical side, it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Intensionality in mathematics.Solomon Feferman - 1985 - Journal of Philosophical Logic 14 (1):41 - 55.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the foundations of constructive mathematics – especially in relation to the theory of continuous functions.Frank Waaldijk - 2004 - Foundations of Science 10 (3):249-324.
    We discuss the foundations of constructive mathematics, including recursive mathematics and intuitionism, in relation to classical mathematics. There are connections with the foundations of physics, due to the way in which the different branches of mathematics reflect reality. Many different axioms and their interrelationship are discussed. We show that there is a fundamental problem in BISH (Bishop’s school of constructive mathematics) with regard to its current definition of ‘continuous function’. This problem is closely related to the definition in BISH of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • About and Around Computing Over the Reals.Solomon Feferman - unknown
    1. One theory or many? In 2004 a very interesting and readable article by Lenore Blum, entitled “Computing over the reals: Where Turing meets Newton,” appeared in the Notices of the American Mathematical Society. It explained a basic model of computation over the reals due to Blum, Michael Shub and Steve Smale (1989), subsequently exposited at length in their influential book, Complexity and Real Computation (1997), coauthored with Felipe Cucker. The ‘Turing’ in the title of Blum’s article refers of course (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Toward a constructive theory of unbounded linear operators.Feng Ye - 2000 - Journal of Symbolic Logic 65 (1):357-370.
    We show that the following results in the classical theory of unbounded linear operators on Hilbert spaces can be proved within the framework of Bishop's constructive mathematics: the Kato-Rellich theorem, the spectral theorem, Stone's theorem, and the self-adjointness of the most common quantum mechanical operators, including the Hamiltonians of electro-magnetic fields with some general forms of potentials.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The knowing mathematician.Nicolas D. Goodman - 1984 - Synthese 60 (1):21 - 38.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Working foundations.Solomon Feferman - 1985 - Synthese 62 (2):229 - 254.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Toward a Clarity of the Extreme Value Theorem.Karin U. Katz, Mikhail G. Katz & Taras Kudryk - 2014 - Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Objection to Naturalism and Atheism from Logic.Christopher Gregory Weaver - 2019 - In Graham Oppy (ed.), A Companion to Atheism and Philosophy. Hoboken: Blackwell. pp. 451-475.
    I proffer a success argument for classical logical consequence. I articulate in what sense that notion of consequence should be regarded as the privileged notion for metaphysical inquiry aimed at uncovering the fundamental nature of the world. Classical logic breeds necessitism. I use necessitism to produce problems for both ontological naturalism and atheism.
    Download  
     
    Export citation  
     
    Bookmark  
  • A continuity principle equivalent to the monotone $$Pi ^{0}_{1}$$ fan theorem.Tatsuji Kawai - 2019 - Archive for Mathematical Logic 58 (3-4):443-456.
    The strong continuity principle reads “every pointwise continuous function from a complete separable metric space to a metric space is uniformly continuous near each compact image.” We show that this principle is equivalent to the fan theorem for monotone \ bars. We work in the context of constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Rings and Fields, a Constructive View.Daniel A. Romano - 1988 - Mathematical Logic Quarterly 34 (1):25-40.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Rings and Fields, a Constructive View.Daniel A. Romano - 1988 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 34 (1):25-40.
    Download  
     
    Export citation  
     
    Bookmark  
  • Étude constructive de problèmes de topologie pour les réels irrationnels.Mohamed Khalouani, Salah Labhalla & Et Henri Lombardi - 1999 - Mathematical Logic Quarterly 45 (2):257-288.
    We study in a constructive manner some problems of topology related to the set Irr of irrational reals. The constructive approach requires a strong notion of an irrational number; constructively, a real number is irrational if it is clearly different from any rational number. We show that the set Irr is one-to-one with the set Dfc of infinite developments in continued fraction . We define two extensions of Irr, one, called Dfc1, is the set of dfc of rationals and irrationals (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Locatedness and overt sublocales.Bas Spitters - 2010 - Annals of Pure and Applied Logic 162 (1):36-54.
    Locatedness is one of the fundamental notions in constructive mathematics. The existence of a positivity predicate on a locale, i.e. the locale being overt, or open, has proved to be fundamental in constructive locale theory. We show that the two notions are intimately connected.Bishop defines a metric space to be compact if it is complete and totally bounded. A subset of a totally bounded set is again totally bounded iff it is located. So a closed subset of a Bishop compact (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem. [REVIEW]Geoffrey Hellman - 1993 - Journal of Philosophical Logic 22 (3):221 - 248.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Book reviews. [REVIEW]Vinod Goel - 1994 - Philosophia Mathematica 2 (1):89-91.
    Download  
     
    Export citation  
     
    Bookmark