Switch to: References

Add citations

You must login to add citations.
  1. Symmetry and the Metaphysics of Physics.David John Baker - 2010 - Philosophy Compass 5 (12):1157-1166.
    The widely held picture of dynamical symmetry as surplus structure in a physical theory has many metaphysical applications. Here, I focus on its relevance to the question of which quantities in a theory represent fundamental natural properties.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Structural Realism.James Ladyman - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    Structural realism is considered by many realists and antirealists alike as the most defensible form of scientific realism. There are now many forms of structural realism and an extensive literature about them. There are interesting connections with debates in metaphysics, philosophy of physics and philosophy of mathematics. This entry is intended to be a comprehensive survey of the field.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Holism and structuralism in U(1) gauge theory.Holger Lyre - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):643-670.
    After decades of neglect philosophers of physics have discovered gauge theories--arguably the paradigm of modern field physics--as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism--in the eyes of its proponents the best suited realist position towards modern physics--has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories--in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Wait, Why Gauge?Sébastien Rivat - forthcoming - British Journal for the Philosophy of Science.
    Philosophers of physics have spent much effort unpacking the structure of gauge theories. But surprisingly, little attention has been devoted to the question of why we should require our best theories to be locally gauge invariant in the first place. Drawing on Steven Weinberg's works in the mid-1960s, I argue that the principle of local gauge invariance follows from Lorentz invariance and other natural assumptions in the context of perturbative relativistic quantum field theory. On this view, gauge freedom is a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding Gauge.James Owen Weatherall - 2016 - Philosophy of Science 83 (5):1039-1049.
    I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Projection, symmetry, and natural kinds.Benjamin C. Jantzen - 2015 - Synthese 192 (11):3617-3646.
    Scientific practice involves two kinds of induction. In one, generalizations are drawn about the states of a particular system of variables. In the other, generalizations are drawn across systems in a class. We can discern two questions of correctness about both kinds of induction: what distinguishes those systems and classes of system that are ‘projectible’ in Goodman’s sense from those that are not, and what are the methods by which we are able to identify kinds that are likely to be (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Does the Higgs mechanism exist?Holger Lyre - 2008 - International Studies in the Philosophy of Science 22 (2):119-133.
    This paper explores the argument structure of the concept of spontaneous symmetry breaking in the electroweak gauge theory of the Standard Model: the so-called Higgs mechanism. As commonly understood, the Higgs argument is designed to introduce the masses of the gauge bosons by a spontaneous breaking of the gauge symmetry of an additional field, the Higgs field. The technical derivation of the Higgs mechanism, however, consists in a mere reshuffling of degrees of freedom by transforming the Higgs Lagrangian in a (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Against Symmetry Fundamentalism.Cristian Lopez - forthcoming - Erkenntnis:1-25.
    Symmetry fundamentalism claims that symmetries should be taken metaphysically seriously as part of the fundamental ontology. The main aim of this paper is to bring some novel objections against this view. I make two points. The first places symmetry fundamentalism within a broader network of philosophical commitments. I claim that symmetry fundamentalism entails idealization realism which, in turn, entails the reification of further theoretical structures. This might lead to an overloaded ontology as well as open the way to criticisms from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical fields and quantum time-evolution in the Aharonov–Bohm effect.James Mattingly - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):888-905.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The cosmological constant, the fate of the universe, unimodular gravity, and all that.John Earman - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4):559-577.
    The cosmological constant is back. Several lines of evidence point to the conclusion that either there is a positive cosmological constant or else the universe is filled with a strange form of matter (“quintessence”) that mimics some of the effects of a positive lambda. This paper investigates the implications of the former possibility. Two senses in which the cosmological constant can be a constant are distinguished: the capital Λ sense in which lambda is a universal constant on a par with (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Geometric foundations of classical yang–mills theory.Gabriel Catren - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):511-531.
    We analyze the geometric foundations of classical Yang-Mills theory by studying the relationships between internal relativity, locality, global/local invariance, and background independence. We argue that internal relativity and background independence are the two independent defining principles of Yang-Mills theory. We show that local gauge invariance -heuristically implemented by means of the gauge argument- is a direct consequence of internal relativity. Finally, we analyze the conceptual meaning of BRST symmetry in terms of the invariance of the gauge fixed theory under general (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Should physical symmetries guide metaphysics? Two reasons why they should maybe not.Cristian López - 2023 - European Journal for Philosophy of Science 13 (2):1-23.
    Symmetry-based inferences have permeated many discussions in philosophy of physics and metaphysics of science. It is claimed that symmetries in our physical theories would allow us to draw metaphysical conclusions about the world, a view that I call ‘symmetry inferentialism’. This paper is critical to this view. I claim that (a) it assumes a philosophically questionable characterization of the relevant validity domain of physical symmetries, and (b) it overlooks a distinction between two opposing ways through which relevant physical symmetries become (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theories of Newtonian gravity and empirical indistinguishability.Jonathan Bain - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):345-376.
    In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton–Cartan gravity can be identified in the physics literature—a ‘‘weak’’ version and a ‘‘strong’’ version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Gauge and Ghosts.Guy Hetzroni - 2021 - British Journal for the Philosophy of Science 72 (3):773-796.
    This article suggests a fresh look at gauge symmetries, with the aim of drawing a clear line between the a priori theoretical considerations involved, and some methodological and empirical non-deductive aspects that are often overlooked. The gauge argument is primarily based on a general symmetry principle expressing the idea that a change of mathematical representation should not change the form of the dynamical law. In addition, the ampliative part of the argument is based on the introduction of new degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Symmetries as by-products of conserved quantities.Diego Romero-Maltrana - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):358-368.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Tracking down gauge: An ode to the constrained Hamiltonian formalism.John Earman - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 140--62.
    Like moths attracted to a bright light, philosophers are drawn to glitz. So in discussing the notions of ‘gauge’, ‘gauge freedom’, and ‘gauge theories’, they have tended to focus on examples such as Yang–Mills theories and on the mathematical apparatus of fibre bundles. But while Yang–Mills theories are crucial to modern elementary particle physics, they are only a special case of a much broader class of gauge theories. And while the fibre bundle apparatus turned out, in retrospect, to be the (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Condensed matter physics and the nature of spacetime.Jonathan Bain - 2007
    This essay considers the prospects of modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. It evaluates three examples of spacetime analogues in condensed matter systems that have appeared in the recent physics literature, indicating the extent to which they are viable, and considers what they suggest about the nature of spacetime.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On gauge symmetries, indiscernibilities, and groupoid-theoretical equalities.Gabriel Catren - 2022 - Studies in History and Philosophy of Science Part A 91 (C):244-261.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Curie’s Principle and spontaneous symmetry breaking.John Earman - 2004 - International Studies in the Philosophy of Science 18 (2 & 3):173 – 198.
    In 1894 Pierre Curie announced what has come to be known as Curie's Principle: the asymmetry of effects must be found in their causes. In the same publication Curie discussed a key feature of what later came to be known as spontaneous symmetry breaking: the phenomena generally do not exhibit the symmetries of the laws that govern them. Philosophers have long been interested in the meaning and status of Curie's Principle. Only comparatively recently have they begun to delve into the (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Klein-Weyl's program and the ontology of gauge and quantum systems.Gabriel Catren - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 61:25-40.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Artificial versus Substantial Gauge Symmetries: A Criterion and an Application to the Electroweak Model.Jordan François - 2019 - Philosophy of Science 86 (3):472-496.
    To systematically answer the generalized Kretschmann objection, I propose a mean to make operational a criterion widely recognized as allowing one to decide whether the gauge symmetry of a theory is artificial or substantial. My proposition is based on the dressing field method of gauge symmetry reduction, a new simple tool from mathematical physics. This general scheme allows one in particular to straightforwardly argue that the notion of spontaneous symmetry breaking is superfluous to the empirical success of the electroweak theory. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • For or against structural realism? A verdict from high energy physics.Antigone M. Nounou - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:84-101.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weyl’s gauge argument.Alexander Afriat - 2013 - Foundations of Physics 43 (5):699-705.
    The standard $\mathbb{U}(1)$ “gauge principle” or “gauge argument” produces an exact potential A=dλ and a vanishing field F=d 2 λ=0. Weyl (in Z. Phys. 56:330–352, 1929; Rice Inst. Pam. 16:280–295, 1929) has his own gauge argument, which is sketchy, archaic and hard to follow; but at least it produces an inexact potential A and a nonvanishing field F=dA≠0. I attempt a reconstruction.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Which gauge matters?James Mattingly - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):243-262.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Dispositions, primitive activities, and essentially active objects.Travis Dumsday - 2012 - Pacific Philosophical Quarterly 93 (1):43-64.
    The question of whether there could be a physical object that is necessarily constantly active has a long history, and it has recently arisen again in the literature on dispositions. I examine and critique two proposals for affirming the possibility of such an object. I then advocate a third option, one which is workable if paired with natural-kind essentialism. Finally I briefly outline three possible implications of this view for wider debates concerning the ontology of dispositions and natural kinds.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The construction of the Higgs mechanism and the emergence of the electroweak theory.Koray Karaca - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (1):1-16.
    I examine the construction process of the “Higgs mechanism” and its subsequent use by Steven Weinberg to formulate the electroweak theory of elementary particle physics. I characterize the development of the Higgs mechanism as a historical process that was guided through analogies drawn to the theories of solid-state physics and that was progressive through diverse contributions in the sixties from a number of physicists working independently. I also offer a detailed comparative study of the similarities and the differences that exist (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Logic of Gauge.Alexander Afriat - 2019 - In Carlos Lobo & Julien Bernard (eds.), Weyl and the Problem of Space: From Science to Philosophy. Springer Verlag.
    The logic of gauge theory is considered by tracing its development from general relativity to Yang-Mills theory, through Weyl's two gauge theories. A handful of elements---which for want of better terms can be called \emph{geometrical justice}, \emph{matter wave}, \emph{second clock effect}, \emph{twice too many energy levels}---are enough to produce Weyl's second theory; and from there, all that's needed to reach the Yang-Mills formalism is a \emph{non-Abelian structure group} (say $\mathbb{SU}\textrm{(}N\textrm{)}$).
    Download  
     
    Export citation  
     
    Bookmark  
  • Empirical equivalence, artificial gauge freedom and a generalized kretschmann objection.J. Brian Pitts - unknown
    Einstein considered general covariance to characterize the novelty of his General Theory of Relativity (GTR), but Kretschmann thought it merely a formal feature that any theory could have. The claim that GTR is ``already parametrized'' suggests analyzing substantive general covariance as formal general covariance achieved without hiding preferred coordinates as scalar ``clock fields,'' much as Einstein construed general covariance as the lack of preferred coordinates. Physicists often install gauge symmetries artificially with additional fields, as in the transition from Proca's to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Why Yang-Mills theories?Alexandre Guay - 2006
    The elucidation of the gauge principle ``is the most pressing problem in current philosophy of physics" Redhead. This paper argues two points that contribute to this elucidation in the context of Yang-Mills theories. 1) Yang-Mills theories, including quantum electrodynamics, form a class. They should be interpreted together. To focus on electrodynamics is a mistake. 2) The essential role of gauge and BRST surplus is to provide a local theory that can be quantized and would be equivalent to the quantization of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dispositionality and Symmetry Structures.Vassilis Livanios - 2018 - Metaphysica 19 (2):201-217.
    A number of metaphysicians and philosophers of science have raised the issue of themodalityof the fundamental structures of the world. Although the debate so far has been largely focused on the (alleged) inherent causal character of fundamental structures, one aspect of it has naturally taken its place as part of the dispositional/categorical debate. In this paper, I focus on the latter in the case of the fundamentalsymmetrystructures. After putting forward the necessary metaphysical presuppositions for the debate to make sense, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A partial elucidation of the gauge principle.Alexandre Guay - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):346-363.
    The elucidation of the gauge principle ‘‘is the most pressing problem in current philosophy of physics’’ said Michael Redhead in 2003. This paper argues for two points that contribute to this elucidation in the context of Yang–Mills theories. (1) Yang–Mills theories, including quantum electrodynamics, form a class. They should be interpreted together. To focus on electrodynamics is potentially misleading. (2) The essential role of gauge and BRST symmetries is to provide a local field theory that can be quantized and would (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Shortening the gauge argument.Alexander Afriat - unknown
    The ''gauge argument'' is often used to 'deduce' interactions from a symmetry requirement. A transition---whose justification can take some effort---from global to local transformations is typically made at the beginning of the argument. But one can spare the trouble by \emph{starting} with local transformations, as global ones do not exist in general. The resulting economy seems noteworthy.
    Download  
     
    Export citation  
     
    Bookmark