Switch to: References

Add citations

You must login to add citations.
  1. Reconstructing Bohr’s Reply to EPR in Algebraic Quantum Theory.Ozawa Masanao & Yuichiro Kitajima - 2012 - Foundations of Physics 42 (4):475-487.
    Halvorson and Clifton have given a mathematical reconstruction of Bohr’s reply to Einstein, Podolsky and Rosen, and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr’s reply. In the present paper, we generalize the above consistency theorem, with a rather elementary proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Underdeterminations of Consciousness in Quantum Mechanics.Lauro de Matos Nunes Filho & Raoni Wohnrath Arroyo - 2018 - Principia: An International Journal of Epistemology 22 (2):321-337.
    Metaphysical underdetermination arises when we are not able to decide, through purely theoretical criteria, between competing interpretations of scientific theories with different metaphysical commitments. This is the case in which non-relativistic quantum mechanics (QM) finds itself in. Among several available interpretations, there is the one that states that the interaction with the conscious mind of a human observer causes a change in the dynamics of quantum objects undergoing from indefinite to definite states. In this paper, we argue that there seems (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Semantic Approach, After 50 Years.Bas C. Van Fraassen - 2024 - In Claus Beisbart & Michael Frauchiger (eds.), Scientific Theories and Philosophical Stances: Themes from van Fraassen. De Gruyter. pp. 23-86.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unscrambling the Omelette of Quantum Contextuality : Preexistent Properties or Measurement Outcomes?Christian de Ronde - 2020 - Foundations of Science 25 (1):55-76.
    In this paper we attempt to analyze the physical and philosophical meaning of quantum contextuality. We will argue that there exists a general confusion within the foundational literature arising from the improper “scrambling” of two different meanings of quantum contextuality. While the first one, introduced by Bohr, is related to an epistemic interpretation of contextuality which stresses the incompatibility of measurement situations described in classical terms; the second meaning of contextuality is related to a purely formal understanding of contextuality as (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Quantum probability: a reliable tool for an agent or a reliable source of reality?C. de Ronde, H. Freytes & G. Sergioli - 2019 - Synthese 198 (S23):5679-5699.
    In this paper we attempt to analyze the concept of quantum probability within quantum computation and quantum computational logic. While the subjectivist interpretation of quantum probability explains it as a reliable predictive tool for an agent in order to compute measurement outcomes, the objectivist interpretation understands quantum probability as providing reliable information of a real state of affairs. After discussing these different viewpoints we propose a particular objectivist interpretation grounded on the idea that the Born rule provides information about an (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures.Christian de Ronde - 2016 - Foundations of Science 23 (4):621-648.
    In this paper we intend to discuss the importance of providing a physical representation of quantum superpositions which goes beyond the mere reference to mathematical structures and measurement outcomes. This proposal goes in the opposite direction to the project present in orthodox contemporary philosophy of physics which attempts to “bridge the gap” between the quantum formalism and common sense “classical reality”—precluding, right from the start, the possibility of interpreting quantum superpositions through non-classical notions. We will argue that in order to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Elementary propositions and essentially incomplete knowledge: A framework for the interpretation of quantum mechanics.William Demopoulos - 2004 - Noûs 38 (1):86–109.
    A central problem in the interpretation of non-relativistic quantum mechanics is to relate the conceptual structure of the theory to the classical idea of the state of a physical system. This paper approaches the problem by presenting an analysis of the notion of an elementary physical proposition. The notion is shown to be realized in standard formulations of the theory and to illuminate the significance of proofs of the impossibility of hidden variable extensions. In the interpretation of quantum mechanics that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Effects and Propositions.William Demopoulos - 2010 - Foundations of Physics 40 (4):368-389.
    The quantum logical and quantum information-theoretic traditions have exerted an especially powerful influence on Bub’s thinking about the conceptual foundations of quantum mechanics. This paper discusses both the quantum logical and information-theoretic traditions from the point of view of their representational frameworks. I argue that it is at this level—at the level of its framework—that the quantum logical tradition has retained its centrality to Bub’s thought. It is further argued that there is implicit in the quantum information-theoretic tradition a set (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Unspeakable Transport-What Quantum Teleportation Might be, and What it More Probably is.Jean-Michel Delhôtel - 2021 - Foundations of Science 27 (2):527-548.
    A Controlled Not variant of the standard quantum teleportation protocol affords a step-by-step analysis of what is, or can be said to be, achieved in the process in either location. Dominant interpretations of what quantum teleportation consists in and implies are reviewed in this light. Being mindful of the statistical significance of the terms and operations involved, as well as awareness of classical analogies, can help sort out what is specifically quantum-mechanical, and what is not, in so-called teleportation. What the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Mechanics and Metaphysical Indeterminacy.George Darby - 2010 - Australasian Journal of Philosophy 88 (2):227-245.
    There has been recent interest in formulating theories of non-representational indeterminacy. The aim of this paper is to clarify the relevance of quantum mechanics to this project. Quantum-mechanical examples of vague objects have been offered by various authors, displaying indeterminate identity, in the face of the famous Evans argument that such an idea is incoherent. It has also been suggested that the quantum-mechanical treatment of state-dependent properties exhibits metaphysical indeterminacy. In both cases it is important to consider the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Constraints on Determinism: Bell Versus Conway–Kochen.Eric Cator & Klaas Landsman - 2014 - Foundations of Physics 44 (7):781-791.
    Bell’s Theorem from Physics 36:1–28 (1964) and the (Strong) Free Will Theorem of Conway and Kochen from Notices AMS 56:226–232 (2009) both exclude deterministic hidden variable theories (or, in modern parlance, ‘ontological models’) that are compatible with some small fragment of quantum mechanics, admit ‘free’ settings of the archetypal Alice and Bob experiment, and satisfy a locality condition akin to parameter independence. We clarify the relationship between these theorems by giving reformulations of both that exactly pinpoint their resemblance and their (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Matters are not so clear on the physical side.Mario Castagnino - 2010 - Foundations of Chemistry 12 (2):159-166.
    According to ontological reductionism, molecular chemistry refers, at last, to the quantum ontology; therefore, the ontological commitments of chemistry turn out to be finally grounded on quantum mechanics. The main problem of this position is that nobody really knows what quantum ontology is. The purpose of this work is to argue that the confidence in the existence of the physical entities described by quantum mechanics does not take into account the interpretative problems of the theory: in the discussions about the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • El problema interpretativo de la mecánica cuántica. Interpretación minimal e interpretaciones totales.Alejandro Cassini - 2016 - Revista de Humanidades de Valparaíso 8:9-42.
    In this paper I contend that standard quantum theory has a minimal interpretation, on which all physicists agree. That interpretation is sufficient for every application of quantum theory and it has been confirmed by a countless number of experiments. However, it provides neither an overall picture of the quantum world nor an intended ontology for quantum theory. For those reasons, several full interpretations have been proposed in order to complete the minimal interpretation. I then argue that those interpretations –which are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A general conceptual framework for decoherence in closed and open systems.Mario Castagnino, Roberto Laura & Olimpia Lombardi - 2007 - Philosophy of Science 74 (5):968-980.
    In this paper we argue that the formalisms for decoherence originally devised to deal just with closed or open systems can be subsumed under a general conceptual framework, in such a way that they cooperate in the understanding of the same physical phenomenon. This new perspective dissolves certain conceptual difficulties of the einselection program but, at the same time, shows that the openness of the quantum system is not the essential ingredient for decoherence. †To contact the authors, please write to: (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The emergence and interpretation of probability in Bohmian mechanics.Craig Callender - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):351-370.
    A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Quantum monism: an assessment.Claudio Calosi - 2018 - Philosophical Studies 175 (12):3217-3236.
    Monism is roughly the view that there is only one fundamental entity. One of the most powerful argument in its favor comes from quantum mechanics. Extant discussions of quantum monism are framed independently of any interpretation of the quantum theory. In contrast, this paper argues that matters of interpretation play a crucial role when assessing the viability of monism in the quantum realm. I consider four different interpretations: modal interpretations, Bohmian mechanics, many worlds interpretations, and wavefunction realism. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the possibility of submergence.Claudio Calosi - 2017 - Analysis 77 (3):501-511.
    Are submergence and submergent properties metaphysically possible? This is a substantive question that has been either utterly neglected or quickly answered in the negative. This neglect is not only significant in itself; the possibility of submergence plays a crucial role in hotly debated topics in metaphysics, for example, the debate over Monism and Pluralism. This paper is intended to prompt a discussion about metaphysical submergence. In particular I will provide examples of submergent properties, argue that these are metaphysically possible and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Unsharp Quantum Reality.Paul Busch & Gregg Jaeger - 2010 - Foundations of Physics 40 (9-10):1341-1367.
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency—or potentiality—of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Why the quantum?Jeffrey Bub - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (2):241-266.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Revised Proof of the Uniqueness Theorem for ‘No Collapse’ Interpretations of Quantum Mechanics.Jeffrey Bub, Rob Clifton & Sheldon Goldstein - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (1):95-98.
    We show that the Bub-Clifton uniqueness theorem (1996) for 'no collapse' interpretations of quantum mechanics can be proved without the 'weak separability' assumption.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Mechanics as a Principle Theory.Jeffrey Bub - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (1):75-94.
    I show how quantum mechanics, like the theory of relativity, can be understood as a 'principle theory' in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The best of many worlds, or, is quantum decoherence the manifestation of a disposition?Florian J. Boge - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):135-144.
    In this paper I investigate whether the phenomenon of quantum decoherence, the vanishing of interference and detectable entanglement on quantum systems in virtue of interactions with the environment, can be understood as the manifestation of a disposition. I will highlight the advantages of this approach as a realist interpretation of the quantum formalism, and demonstrate how such an approach can benefit from advances in the metaphysics of dispositions. I will also confront some commonalities with and differences to the many worlds (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three-valued logic, indeterminacy and quantum mechanics.Tomasz Bigaj - 2001 - Journal of Philosophical Logic 30 (2):97-119.
    The paper consists of two parts. The first part begins with the problem of whether the original three-valued calculus, invented by J. Łukasiewicz, really conforms to his philosophical and semantic intuitions. I claim that one of the basic semantic assumptions underlying Łukasiewicz's three-valued logic should be that if under any possible circumstances a sentence of the form "X will be the case at time t" is true (resp. false) at time t, then this sentence must be already true (resp. false) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Comparison Between Models of Gravity Induced Decoherence.Sayantani Bera, Sandro Donadi, Kinjalk Lochan & Tejinder P. Singh - 2015 - Foundations of Physics 45 (12):1537-1560.
    It has been suggested in the literature that spatial coherence of the wave function can be dynamically suppressed by fluctuations in the spacetime geometry. These fluctuations represent the minimal uncertainty that is present when one probes spacetime geometry with a quantum probe. Two similar models have been proposed, one by Diósi and one by Karolyhazy and collaborators, based on apparently unrelated minimal spacetime bounds. The two models arrive at somewhat different expressions for the dependence of the localization coherence length on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empirical State Determination of Entangled Two-Level Systems and Its Relation to Information Theory.Y. Ben-Aryeh, A. Mann & B. C. Sanders - 1999 - Foundations of Physics 29 (12):1963-1975.
    Theoretical methods for empirical state determination of entangled two-level systems are analyzed in relation to information theory. We show that hidden variable theories would lead to a Shannon index of correlation between the entangled subsystems which is larger than that predicted by quantum mechanics. Canonical representations which have maximal correlations are treated by the use of Schmidt and Hilbert-Schmidt decomposition of the entangled states, including especially the Bohm singlet state and the GHZ entangled states. We show that quantum mechanics does (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Perspectival Version of the Modal Interpretation of Quantum Mechanics and the Origin of Macroscopic Behavior.Gyula Bene & Dennis Dieks - 2001 - Foundations of Physics 32 (5):645-671.
    We study the process of observation (measurement), within the framework of a “perspectival” (“relational,” “relative state”) version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the object system (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Formalism, ontology and methodology in Bohmian mechanics.Darrin W. Belousek - 2003 - Foundations of Science 8 (2):109-172.
    The relationship between mathematical formalism, physical interpretation and epistemological appraisal in the practice of physical theorizing is considered in the context of Bohmian mechanics. After laying outthe formal mathematical postulates of thetheory and recovering the historical roots ofthe present debate over the meaning of Bohmianmechanics from the early debate over themeaning of Schrödinger's wave mechanics,several contemporary interpretations of Bohmianmechanics in the literature are discussed andcritiqued with respect to the aim of causalexplanation and an alternative interpretationis proposed. Throughout, the over-arching aimis (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Scientific Theories and Philosophical Stances: Themes from van Fraassen.Claus Beisbart & Michael Frauchiger (eds.) - 2024 - De Gruyter.
    Download  
     
    Export citation  
     
    Bookmark  
  • Five Formulations of the Quantum Measurement Problem in the Frame of the Standard Interpretation.Manuel Bächtold - 2008 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 39 (1):17-33.
    The aim of this paper is to give a systematic account of the so-called “measurement problem” in the frame of the standard interpretation of quantum mechanics. It is argued that there is not one but five distinct formulations of this problem. Each of them depends on what is assumed to be a “satisfactory” description of the measurement process in the frame of the standard interpretation. Moreover, the paper points out that each of these formulations refers not to a unique problem, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relativistic Quantum Mechanics through Frame‐Dependent Constructions.Jeffrey A. Barrett - 2005 - Philosophy of Science 72 (5):802-813.
    This paper is concerned with the possibility and nature of relativistic hidden-variable formulations of quantum mechanics. Both ad hoc teleological constructions of spacetime maps and frame-dependent constructions of spacetime maps are considered. While frame-dependent constructions are clearly preferable, they provide neither mechanical nor causal explanations for local quantum events. Rather, the hiddenvariable dynamics used in such constructions is just a rule that helps to characterize the set of all possible spacetime maps. But while having neither mechanical nor causal explanations of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Are our best physical theories (probably and/or approximately) true?Jeffrey A. Barrett - 2003 - Philosophy of Science 70 (5):1206-1218.
    There is good reason to suppose that our best physical theories are false: In addition to its own internal problems, the standard formulation of quantum mechanics is logically incompatible with special relativity. I will also argue that we have no concrete idea what it means to claim that these theories are approximately true.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On physics, metaphysics, and metametaphysics.Jonas R. Becker Arenhart & Raoni Wohnrath Arroyo - 2021 - Metaphilosophy 52 (2):175-199.
    Nonrelativistic quantum mechanics (QM) works perfectly well for all practical purposes. Once one admits, however, that a successful scientific theory is supposed not only to make predictions but also to tell us a story about the world in which we live, a philosophical problem emerges: in the specific case of QM, it is not possible to associate with the theory a unique scientific image of the world; there are several images. The fact that the theory may be compatible with distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A new chapter in the problem of the reduction of chemistry to physics: the Quantum Theory of Atoms in Molecules.Jesus Alberto Jaimes Arriaga, Sebastian Fortin & Olimpia Lombardi - 2019 - Foundations of Chemistry 21 (1):125-136.
    The problem of the reduction of chemistry to physics has been traditionally addressed in terms of classical structural chemistry and standard quantum mechanics. In this work, we will study the problem from the perspective of the Quantum Theory of Atoms in Molecules, proposed by Richard Bader in the nineties. The purpose of this article is to unveil the role of QTAIM in the inter-theoretical relations between chemistry and physics. We argue that, although the QTAIM solves two relevant obstacles to reduction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generic Bohmian Trajectories of an Isolated Particle.D. M. Appleby - 1999 - Foundations of Physics 29 (12):1863-1883.
    The generic Bohmian trajectories are calculated for an isolated particle in an approximate energy eigenstate, for an arbitrary one-dimensional potential well. It is shown that the necessary and sufficient condition for there to be a negligible probability of the trajectory deviating significantly from the classical trajectory at any stage in the motion is that the state be a narrowly localised wave packet. The properties of the Bohmian trajectories are compared with those in the interpretation recently proposed by García de Polavieja. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Why decoherence has not solved the measurement problem: a response to P.W. Anderson.Stephen L. Adler - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):135-142.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Why decoherence has not solved the measurement problem: a response to P.W. Anderson.Stephen L. Adler - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):135-142.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Must hidden variables theories be contextual? Kochen & Specker meet von Neumann and Gleason.Pablo Acuña - 2021 - European Journal for Philosophy of Science 11 (2):1-30.
    It is a widespread belief that the Kochen-Specker theorem imposes a contextuality constraint on the ontology of beables in quantum hidden variables theories. On the other hand, after Bell’s influential critique, the importance of von Neumann’s wrongly called ‘impossibility proof’ has been severely questioned. However, Max Jammer, Jeffrey Bub and Dennis Dieks have proposed insightful reassessments of von Neumann’s theorem: what it really shows is that hidden variables theories cannot represent their beables by means of Hermitian operators in Hilbert space. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Charting the landscape of interpretation, theory rivalry, and underdetermination in quantum mechanics.Pablo Acuña - 2019 - Synthese 198 (2):1711-1740.
    When we speak about different interpretations of quantum mechanics it is suggested that there is one single quantum theory that can be interpreted in different ways. However, after an explicit characterization of what it is to interpret quantum mechanics, the right diagnosis is that we have a case of predictively equivalent rival theories. I extract some lessons regarding the resulting underdetermination of theory choice. Issues about theoretical identity, theoretical and methodological pluralism, and the prospects for a realist stance towards quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos.Melanie Frappier, Derek Brown & Robert DiSalle (eds.) - 2011 - Dordrecht and London: Springer.
    The essays in this volume concern the points of intersection between analytic philosophy and the philosophy of the exact sciences. More precisely, it concern connections between knowledge in mathematics and the exact sciences, on the one hand, and the conceptual foundations of knowledge in general. Its guiding idea is that, in contemporary philosophy of science, there are profound problems of theoretical interpretation-- problems that transcend both the methodological concerns of general philosophy of science, and the technical concerns of philosophers of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • God Acts in the Quantum World.Bradley Monton - 2014 - In Jonathan Kvanvig & Jonathan L. Kvanvig (eds.), Oxford Studies in Philosophy of Religion Volume 5. Oxford, GB: Oxford University Press.
    Suppose that God exists, and that God does not violate the laws of nature he created for the world. God can nevertheless act in the world, by acting at the indeterministic quantum level. This chapter makes two specific points about God’s quantum action. First, on some ways of understanding quantum mechanics (specifically, the GRW theory, and the associated Continuous Spontaneous Localization theories), God’s actions are almost unlimited, contrary to those who say that God would be quite constrained in his action, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Formalism and Interpretation in Quantum Theory.Alexander Wilce - 2010 - Foundations of Physics 40 (4):434-462.
    Quantum Mechanics can be viewed as a linear dynamical theory having a familiar mathematical framework but a mysterious probabilistic interpretation, or as a probabilistic theory having a familiar interpretation but a mysterious formal framework. These points of view are usually taken to be somewhat in tension with one another. The first has generated a vast literature aiming at a “realistic” and “collapse-free” interpretation of quantum mechanics that will account for its statistical predictions. The second has generated an at least equally (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Solving the measurement problem: De broglie-Bohm loses out to Everett. [REVIEW]Harvey R. Brown & David Wallace - 2004 - Foundations of Physics 35 (4):517-540.
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Parity Proofs of the Bell-Kochen-Specker Theorem Based on the 600-cell.Mordecai Waegell, P. K. Aravind, Norman D. Megill & Mladen Pavičić - 2011 - Foundations of Physics 41 (5):883-904.
    The set of 60 real rays in four dimensions derived from the vertices of a 600-cell is shown to possess numerous subsets of rays and bases that provide basis-critical parity proofs of the Bell-Kochen-Specker (BKS) theorem (a basis-critical proof is one that fails if even a single basis is deleted from it). The proofs vary considerably in size, with the smallest having 26 rays and 13 bases and the largest 60 rays and 41 bases. There are at least 90 basic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Disarming the Ultimate Historical Challenge to Scientific Realism.Peter Vickers - 2020 - British Journal for the Philosophy of Science 71 (3):987-1012.
    Probably the most dramatic historical challenge to scientific realism concerns Arnold Sommerfeld’s derivation of the fine structure energy levels of hydrogen. Not only were his predictions good, he derived exactly the same formula that would later drop out of Dirac’s 1928 treatment. And yet the most central elements of Sommerfeld’s theory were not even approximately true: his derivation leans heavily on a classical approach to elliptical orbits, including the necessary adjustments to these orbits demanded by relativity. Even physicists call Sommerfeld’s (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Science as representation: Flouting the criteria.Bas C. van Fraassen - 2004 - Philosophy of Science 71 (5):794-804.
    Criteria of adequacy for scientific representation of the phenomena pertain to accuracy and truth. But that representation is selective and may require distortion even in the selected parameters; this point is intimately connected with the fact that representation is intentional, and its adequacy relative to its particular purpose. Since observation and measurement are perspectival and the appearances to be saved are perspectival measurement outcomes, the question whether this “saving” is an explanatory relation provides a new focus for the realist/antirealist debate. (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On a supposed conceptual inadequacy of the Shannon information in quantum mechanics.C. G. Timpson - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):441-468.
    Recently, Brukner and Zeilinger 3354) have claimed that the Shannon information is not well defined as a measure of information in quantum mechanics, adducing arguments that seek to show that it is inextricably tied to classical notions of measurement. It is shown here that these arguments do not succeed: the Shannon information does not have problematic ties to classical concepts. In a further argument, Brukner and Zeilinger compare the Shannon information unfavourably to their preferred information measure, I , with regard (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Idealization and Formalism in Bohr’s Approach to Quantum Theory.Scott Tanona - 2004 - Philosophy of Science 71 (5):683-695.
    I reinterpret Bohr's attitude towards quantum mechanical formalism and its empirical content, based on his understanding of the correspondence principle and its approximate applicability. I suggest that Bohr understood complementarity as a limitation imposed by the commutation relations upon the applicability of the idealizations which had grounded the use of the correspondence principle. By discussing this interpretation against the contemporary background of discussions regarding “naïve realism” about operators (as observables), I suggest that a Bohrian view on the empirical content of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Decoherence and the Copenhagen cut.Scott Tanona - 2013 - Synthese 190 (16):3625-3649.
    While it is widely agreed that decoherence will not solve the measurement problem, decoherence has been used to explain the “emergence of classicality” and to eliminate the need for a Copenhagen edict that some systems simply have to be treated as classical via a quantum-classical “cut”. I argue that decoherence still relies on such a cut. Decoherence accounts derive classicality only in virtue of their incompleteness, by omission of part of the entangled system of which the classical-appearing subsystem is a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Measurement and the justification of the statistical postulate in Bohm's causal interpretation of quantum mechanics.J. Subramanyam - 1997 - Synthese 113 (3):423-445.
    I briefly sketch Bohm's causal interpretation (BCI) and its solution to the measurement problem. Crucial to BCI's no-collapse account of both ideal and non-ideal measurement is the existence of particles in addition to wavefunctions. The particles in their role as the producers of the observable experimental outcomes render practical considerations, such as what observables can be reasonably measured or how to get rid of interference terms in non-ideal measurements, secondary to BCI's account of measurement. I then explain why it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Characterization of Quantum Gaussian Stochastic Evolution Schemes.D. Salgado, J. L. Sánchez-Gómez & M. Ferrero - 2006 - Foundations of Physics 36 (4):526-540.
    We give a common mathematical characterization of relevant stochastic evolution schemes built up in the literatute to attack the quantum measurement problem. This characterization is based on two hypotheses, namely, (i) the trace conservation with probability one and (ii) the existence of a complex phase determining a linear support for the stochastic process driving the random evolution.
    Download  
     
    Export citation  
     
    Bookmark