Switch to: References

Add citations

You must login to add citations.
  1. Representation and Invariance of Scientific Structures.Patrick Suppes - 2002 - CSLI Publications (distributed by Chicago University Press).
    An early, very preliminary edition of this book was circulated in 1962 under the title Set-theoretical Structures in Science. There are many reasons for maintaining that such structures play a role in the philosophy of science. Perhaps the best is that they provide the right setting for investigating problems of representation and invariance in any systematic part of science, past or present. Examples are easy to cite. Sophisticated analysis of the nature of representation in perception is to be found already (...)
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  • More infinity for a better finitism.Sam Sanders - 2010 - Annals of Pure and Applied Logic 161 (12):1525-1540.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed in around 1995 by Patrick Suppes and Richard Sommer. It is based on an earlier system developed by Rolando Chuaqui and Patrick Suppes. Here, we discuss the inherent problems and limitations of the classical nonstandard framework and propose a much-needed refinement of ERNA, called , in the spirit of Karel Hrbacek’s stratified set theory. We study the metamathematics of and its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Finitism in geometry.Patrick Suppes - 2001 - Erkenntnis 54 (1):133-144.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Forcing in proof theory.Jeremy Avigad - 2004 - Bulletin of Symbolic Logic 10 (3):305-333.
    Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Dirac delta function in two settings of Reverse Mathematics.Sam Sanders & Keita Yokoyama - 2012 - Archive for Mathematical Logic 51 (1-2):99-121.
    The program of Reverse Mathematics (Simpson 2009) has provided us with the insight that most theorems of ordinary mathematics are either equivalent to one of a select few logical principles, or provable in a weak base theory. In this paper, we study the properties of the Dirac delta function (Dirac 1927; Schwartz 1951) in two settings of Reverse Mathematics. In particular, we consider the Dirac Delta Theorem, which formalizes the well-known property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Erna and Friedman's reverse mathematics.Sam Sanders - 2011 - Journal of Symbolic Logic 76 (2):637 - 664.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed around 1995 by Patrick Suppes and Richard Sommer. Recently, the author showed the consistency of ERNA with several transfer principles and proved results of nonstandard analysis in the resulting theories (see [12] and [13]). Here, we show that Weak König's lemma (WKL) and many of its equivalent formulations over RCA₀ from Reverse Mathematics (see [21] and [22]) can be 'pushed down' (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Future development of scientific structures closer to experiments: Response to F.A. Muller.Patrick Suppes - 2011 - Synthese 183 (1):115-126.
    First of all, I agree with much of what F.A. Muller says in his article ‘Reflections on the revolution in Stanford’. And where I differ, the difference is on the decision of what direction of further development represents the best choice for the philosophy of science. I list my remarks as a sequence of topics.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fragment of nonstandard analysis with a finitary consistency proof.Michal Rössler & Emil Jeřábek - 2007 - Bulletin of Symbolic Logic 13 (1):54-70.
    We introduce a nonstandard arithmetic $NQA^-$ based on the theory developed by R. Chuaqui and P. Suppes in [2] (we will denote it by $NQA^+$ ), with a weakened external open minimization schema. A finitary consistency proof for $NQA^-$ formalizable in PRA is presented. We also show interesting facts about the strength of the theories $NQA^-$ and $NQA^+$ ; $NQA^-$ is mutually interpretable with $I\Delta_0 + EXP$ , and on the other hand, $NQA^+$ interprets the theories IΣ1 and $WKL_0$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Logic is not Logic.Jean-Ives Béziau - 2010 - Abstracta 6 (1):73-102.
    In this paper we discuss the difference between (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weak theories of nonstandard arithmetic and analysis.Jeremy Avigad - manuscript
    A general method of interpreting weak higher-type theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomial-time computable arithmetic. A means of formalizing basic real analysis in such theories is sketched.
    Download  
     
    Export citation  
     
    Bookmark   8 citations