Switch to: References

Add citations

You must login to add citations.
  1. Inferential Constants.Camillo Fiore, Federico Pailos & Mariela Rubin - 2022 - Journal of Philosophical Logic 52 (3):767-796.
    A metainference is usually understood as a pair consisting of a collection of inferences, called premises, and a single inference, called conclusion. In the last few years, much attention has been paid to the study of metainferences—and, in particular, to the question of what are the valid metainferences of a given logic. So far, however, this study has been done in quite a poor language. Our usual sequent calculi have no way to represent, e.g. negations, disjunctions or conjunctions of inferences. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A truth-maker semantics for ST: refusing to climb the strict/tolerant hierarchy.Ulf Hlobil - 2022 - Synthese 200 (5):1-23.
    The paper presents a truth-maker semantics for Strict/Tolerant Logic (ST), which is the currently most popular logic among advocates of the non-transitive approach to paradoxes. Besides being interesting in itself, the truth-maker presentation of ST offers a new perspective on the recently discovered hierarchy of meta-inferences that, according to some, generalizes the idea behind ST. While fascinating from a mathematical perspective, there is no agreement on the philosophical significance of this hierarchy. I aim to show that there is no clear (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sequent-Calculi for Metainferential Logics.Bruno Da Ré & Federico Pailos - 2021 - Studia Logica 110 (2):319-353.
    In recent years, some theorists have argued that the clogics are not only defined by their inferences, but also by their metainferences. In this sense, logics that coincide in their inferences, but not in their metainferences were considered to be different. In this vein, some metainferential logics have been developed, as logics with metainferences of any level, built as hierarchies over known logics, such as \, and \. What is distinctive of these metainferential logics is that they are mixed, i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Derivability and Metainferential Validity.Bruno Da Ré, Damian Szmuc & Paula Teijeiro - 2021 - Journal of Philosophical Logic 51 (6):1521-1547.
    The aim of this article is to study the notion of derivability and its semantic counterpart in the context of non-transitive and non-reflexive substructural logics. For this purpose we focus on the study cases of the logics _S__T_ and _T__S_. In this respect, we show that this notion doesn’t coincide, in general, with a nowadays broadly used semantic approach towards metainferential validity: the notion of local validity. Following this, and building on some previous work by Humberstone, we prove that in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Metainferential duality.Bruno Da Ré, Federico Pailos, Damian Szmuc & Paula Teijeiro - 2020 - Journal of Applied Non-Classical Logics 30 (4):312-334.
    The aim of this article is to discuss the extent to which certain substructural logics are related through the phenomenon of duality. Roughly speaking, metainferences are inferences between collect...
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (Meta)inferential levels of entailment beyond the Tarskian paradigm.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - 2019 - Synthese 198 (S22):5265-5289.
    In this paper we discuss the extent to which the very existence of substructural logics puts the Tarskian conception of logical systems in jeopardy. In order to do this, we highlight the importance of the presence of different levels of entailment in a given logic, looking not only at inferences between collections of formulae but also at inferences between collections of inferences—and more. We discuss appropriate refinements or modifications of the usual Tarskian identity criterion for logical systems, and propose an (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Systems for Non-Reflexive Consequence.Carlo Nicolai & Lorenzo Rossi - 2023 - Studia Logica 111 (6):947-977.
    Substructural logics and their application to logical and semantic paradoxes have been extensively studied. In the paper, we study theories of naïve consequence and truth based on a non-reflexive logic. We start by investigating the semantics and the proof-theory of a system based on schematic rules for object-linguistic consequence. We then develop a fully compositional theory of truth and consequence in our non-reflexive framework.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classical Logic is not Uniquely Characterizable.Isabella McAllister - 2022 - Journal of Philosophical Logic 51 (6):1345-1365.
    I show that it is not possible to uniquely characterize classical logic when working within classical set theory. By building on recent work by Eduardo Barrio, Federico Pailos, and Damian Szmuc, I show that for every inferential level (finite and transfinite), either classical logic is not unique at that level or there exist intuitively valid inferences of that level that are not definable in modern classical set theory. The classical logician is thereby faced with a three-horned dilemma: Give up uniqueness (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empty Logics.Federico Pailos - 2021 - Journal of Philosophical Logic 51 (6):1387-1415.
    _T__S_ is a logic that has no valid inferences. But, could there be a logic without valid metainferences? We will introduce _T__S_ _ω_, a logic without metainferential validities. Notwithstanding, _T__S_ _ω_ is not as empty—i.e., uninformative—as it gets, because it has many antivalidities. We will later introduce the two-standard logic [_T__S_ _ω_, _S__T_ _ω_ ], a logic without validities and antivalidities. Nevertheless, [_T__S_ _ω_, _S__T_ _ω_ ] is still informative, because it has many contingencies. The three-standard logic [ \(\mathbf {TS}_{\omega (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Simple Tableaus for Simple Logics.Melvin Fitting - 2024 - Notre Dame Journal of Formal Logic 65 (3):275-309.
    Consider those many-valued logic models in which the truth values are a lattice that supplies interpretations for the logical connectives of conjunction and disjunction, and which has a De Morgan involution supplying an interpretation for negation. Assume that the set of designated truth values is a prime filter in the lattice. Each of these structures determines a simple many-valued logic. We show that there is a single Smullyan-style signed tableau system appropriate for all of the logics these structures determine. Differences (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logics of a universal language.Eduardo Alejandro Barrio & Edson Bezerra - 2024 - Asian Journal of Philosophy 3 (1):1-22.
    Semantic paradoxes pose a real threat to logics that attempt to be capable of expressing their own semantic concepts. Particularly, Curry paradoxes seem to show that many solutions must change our intuitive concepts of truth or validity or impose limits on certain inferences that are intuitively valid. In this way, the logic of a universal language would have serious problems. In this paper, we explore a different solution that tries to avoid both limitations as much as possible. Thus, we argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • MTV Logics.Roy T. Cook - 2021 - Journal of Philosophical Logic 51 (6):1477-1519.
    This essay introduces a novel framework to studying many-valued logics – the movable truth value (or MTV ) approach. After setting up the framework, we will show that a vast number of many-valued logics, and in particular many-valued logics that have previously been given very different kinds of semantics, including C, K3, LP, ST, TS, RM fde, and FDE, can all be unified within the MTV -logic approach. This alone is notable, since until now RM fde in particular has resisted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Anti-exceptionalism, truth and the BA-plan.Eduardo Alejandro Barrio, Federico Pailos & Joaquín Toranzo Calderón - 2021 - Synthese 199 (5-6):12561-12586.
    Anti-exceptionalism about logic states that logical theories have no special epistemological status. Such theories are continuous with scientific theories. Contemporary anti-exceptionalists include the semantic paradoxes as a part of the elements to accept a logical theory. Exploring the Buenos Aires Plan, the recent development of the metainferential hierarchy of ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-logics shows that there are multiple options to deal with such paradoxes. There is a whole ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • $$\textsf{ST}$$ and $$\textsf{TS}$$ as Product and Sum.Quentin Blomet & Paul Égré - 2024 - Journal of Philosophical Logic 53 (6):1673-1700.
    The set of $$\textsf{ST}$$ ST -valid inferences is neither the intersection, nor the union of the sets of $$\textsf{K}_3$$ K 3 -valid and $$\textsf{LP}$$ LP -valid inferences, but despite the proximity to both systems, an extensional characterization of $$\textsf{ST}$$ ST in terms of a natural set-theoretic operation on the sets of $$\textsf{K}_3$$ K 3 -valid and $$\textsf{LP}$$ LP -valid inferences is still wanting. In this paper, we show that it is their relational product. Similarly, we prove that the set of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Higher-level Inferences in the Strong-Kleene Setting: A Proof-theoretic Approach.Pablo Cobreros, Elio La Rosa & Luca Tranchini - 2021 - Journal of Philosophical Logic 51 (6):1417-1452.
    Building on early work by Girard ( 1987 ) and using closely related techniques from the proof theory of many-valued logics, we propose a sequent calculus capturing a hierarchy of notions of satisfaction based on the Strong Kleene matrices introduced by Barrio et al. (Journal of Philosophical Logic 49:93–120, 2020 ) and others. The calculus allows one to establish and generalize in a very natural manner several recent results, such as the coincidence of some of these notions with their classical (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Validities, antivalidities and contingencies: A multi-standard approach.Eduardo Barrio & Federico Pailos - 2021 - Journal of Philosophical Logic 51 (1):75-98.
    It is widely accepted that classical logic is trivialized in the presence of a transparent truth-predicate. In this paper, we will explain why this point of view must be given up. The hierarchy of metainferential logics defined in Barrio et al. and Pailos recovers classical logic, either in the sense that every classical inferential validity is valid at some point in the hierarchy ), or because a logic of a transfinite level defined in terms of the hierarchy shares its validities (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Metainferential Reasoning on Strong Kleene Models.Andreas Fjellstad - 2021 - Journal of Philosophical Logic 51 (6):1327-1344.
    Barrio et al. (_Journal of Philosophical Logic_, _49_(1), 93–120, 2020 ) and Pailos (_Review of Symbolic Logic_, _2020_(2), 249–268, 2020 ) develop an approach to define various metainferential hierarchies on strong Kleene models by transferring the idea of distinct standards for premises and conclusions from inferences to metainferences. In particular, they focus on a hierarchy named the \(\mathbb {S}\mathbb {T}\) -hierarchy where the inferential logic at the bottom of the hierarchy is the non-transitive logic ST but where each subsequent metainferential (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations