Switch to: References

Add citations

You must login to add citations.
  1. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A type-theoretical approach for ontologies: The case of roles.Patrick Barlatier & Richard Dapoigny - 2012 - Applied ontology 7 (3):311-356.
    In the domain of ontology design as well as in Knowledge Representation, modeling universals is a challenging problem.Most approaches that have addressed this problem rely on Description Logics (DLs) but many difficulties remain, due to under-constrained representation which reduces the inferences that can be drawn and further causes problems in expressiveness. In mathematical logic and program checking, type theories have proved to be appealing but, so far they have not been applied in the formalization of ontologies. To bridge this gap, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Encoding modal logics in logical frameworks.Arnon Avron, Furio Honsell, Marino Miculan & Cristian Paravano - 1998 - Studia Logica 60 (1):161-208.
    We present and discuss various formalizations of Modal Logics in Logical Frameworks based on Type Theories. We consider both Hilbert- and Natural Deduction-style proof systems for representing both truth (local) and validity (global) consequence relations for various Modal Logics. We introduce several techniques for encoding the structural peculiarities of necessitation rules, in the typed -calculus metalanguage of the Logical Frameworks. These formalizations yield readily proof-editors for Modal Logics when implemented in Proof Development Environments, such as Coq or LEGO.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computers, justification, and mathematical knowledge.Konstantine Arkoudas & Selmer Bringsjord - 2007 - Minds and Machines 17 (2):185-202.
    The original proof of the four-color theorem by Appel and Haken sparked a controversy when Tymoczko used it to argue that the justification provided by unsurveyable proofs carried out by computers cannot be a priori. It also created a lingering impression to the effect that such proofs depend heavily for their soundness on large amounts of computation-intensive custom-built software. Contra Tymoczko, we argue that the justification provided by certain computerized mathematical proofs is not fundamentally different from that provided by surveyable (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Formal semantics in modern type theories with coercive subtyping.Zhaohui Luo - 2012 - Linguistics and Philosophy 35 (6):491-513.
    In the formal semantics based on modern type theories, common nouns are interpreted as types, rather than as predicates of entities as in Montague’s semantics. This brings about important advantages in linguistic interpretations but also leads to a limitation of expressive power because there are fewer operations on types as compared with those on predicates. The theory of coercive subtyping adequately extends the modern type theories and, as shown in this paper, plays a very useful role in making type theories (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Independence results in formal topology.Silvio Valentini - 2012 - Annals of Pure and Applied Logic 163 (2):151-156.
    Download  
     
    Export citation  
     
    Bookmark  
  • The seven virtues of simple type theory.William M. Farmer - 2008 - Journal of Applied Logic 6 (3):267-286.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Intuitionistic categorial grammar.Aarne Ranta - 1991 - Linguistics and Philosophy 14 (2):203 - 239.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An epistemic logic for becoming informed.Giuseppe Primiero - 2009 - Synthese 167 (2):363 - 389.
    Various conceptual approaches to the notion of information can currently be traced in the literature in logic and formal epistemology. A main issue of disagreement is the attribution of truthfulness to informational data, the so called Veridicality Thesis (Floridi 2005). The notion of Epistemic Constructive Information (Primiero 2007) is one of those rejecting VT. The present paper develops a formal framework for ECI. It extends on the basic approach of Artemov’s logic of proofs (Artemov 1994), representing an epistemic logic based (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Limits of Computation.Andrew Powell - 2022 - Axiomathes 32 (6):991-1011.
    This article provides a survey of key papers that characterise computable functions, but also provides some novel insights as follows. It is argued that the power of algorithms is at least as strong as functions that can be proved to be totally computable in type-theoretic translations of subsystems of second-order Zermelo Fraenkel set theory. Moreover, it is claimed that typed systems of the lambda calculus give rise naturally to a functional interpretation of rich systems of types and to a hierarchy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ordinal Type Theory.Jan Plate - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    Higher-order logic, with its type-theoretic apparatus known as the simple theory of types (STT), has increasingly come to be employed in theorizing about properties, relations, and states of affairs—or ‘intensional entities’ for short. This paper argues against this employment of STT and offers an alternative: ordinal type theory (OTT). Very roughly, STT and OTT can be regarded as complementary simplifications of the ‘ramified theory of types’ outlined in the Introduction to Principia Mathematica (on a realist reading). While STT, understood as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Composition of Deductions within the Propositions-As-Types Paradigm.Ivo Pezlar - 2020 - Logica Universalis (4):1-13.
    Kosta Došen argued in his papers Inferential Semantics (in Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning, pp. 147–162. Springer, Berlin 2015) and On the Paths of Categories (in Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics, pp. 65–77. Springer, Cham 2016) that the propositions-as-types paradigm is less suited for general proof theory because—unlike proof theory based on category theory—it emphasizes categorical proofs over hypothetical inferences. One specific instance of this, Došen points out, is that the Curry–Howard isomorphism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Embedding HTLCG into LCGϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {LCG}_\phi $$\end{document}. [REVIEW]Jordan Needle - 2022 - Journal of Logic, Language and Information 31 (4):677-721.
    A wide array of syntactic phenomena can be categorized as being either direction-sensitive (e.g. coordination) or direction-insensitive (quantification and medial extraction). In the realm of categorial grammar, many frameworks are engineered to handle one class of phenomena at the expense of the other. In particular, Lambek-inspired frameworks handle direction-sensitivity elegantly but struggle with cases of direction-insensitivity, whereas in linear grammars, the situation is just the opposite. One reasonably successful attempt to unify the insights of both types of grammar and allow (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reciprocal Influences Between Proof Theory and Logic Programming.Dale Miller - 2019 - Philosophy and Technology 34 (1):75-104.
    The topics of structural proof theory and logic programming have influenced each other for more than three decades. Proof theory has contributed the notion of sequent calculus, linear logic, and higher-order quantification. Logic programming has introduced new normal forms of proofs and forced the examination of logic-based approaches to the treatment of bindings. As a result, proof theory has responded by developing an approach to proof search based on focused proof systems in which introduction rules are organized into two alternating (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A correspondence between Martin-löf type theory, the ramified theory of types and pure type systems.Fairouz Kamareddine & Twan Laan - 2001 - Journal of Logic, Language and Information 10 (3):375-402.
    In Russell''s Ramified Theory of Types RTT, two hierarchical concepts dominate:orders and types. The use of orders has as a consequencethat the logic part of RTT is predicative.The concept of order however, is almost deadsince Ramsey eliminated it from RTT. This is whywe find Church''s simple theory of types (which uses the type concept without the order one) at the bottom of the Barendregt Cube rather than RTT. Despite the disappearance of orders which have a strong correlation with predicativity, predicative (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proofs and programs.Giuseppe Longo - 2003 - Synthese 134 (1-2):85 - 117.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructive Type Theory, an appetizer.Laura Crosilla - 2024 - In Peter Fritz & Nicholas K. Jones (eds.), Higher-Order Metaphysics. Oxford University Press.
    Recent debates in metaphysics have highlighted the significance of type theories, such as Simple Type Theory (STT), for our philosophical analysis. In this chapter, I present the salient features of a constructive type theory in the style of Martin-Löf, termed CTT. My principal aim is to convey the flavour of this rich, flexible and sophisticated theory and compare it with STT. I especially focus on the forms of quantification which are available in CTT. A further aim is to argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Curry to Haskell.Felice Cardone - 2020 - Philosophy and Technology 34 (1):57-74.
    We expose some basic elements of a style of programming supported by functional languages like Haskell by relating them to a coherent set of notions and techniques from Curry’s work in combinatory logic and formal systems, and their algebraic and categorical interpretations. Our account takes the form of a commentary to a simple fragment of Haskell code attempting to isolate the conceptual sources of the linguistic abstractions involved.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reasoning about knowledge in linear logic: modalities and complexity.Mathieu Marion & Mehrnouche Sadrzadeh - 2004 - In S. Rahman (ed.), Logic, Epistemology, and the Unity of Science. Dordrecht: Kluwer Academic Publishers. pp. 327--350.
    Download  
     
    Export citation  
     
    Bookmark   2 citations