Switch to: References

Add citations

You must login to add citations.
  1. Resource Rationality.Thomas F. Icard - manuscript
    Theories of rational decision making often abstract away from computational and other resource limitations faced by real agents. An alternative approach known as resource rationality puts such matters front and center, grounding choice and decision in the rational use of finite resources. Anticipated by earlier work in economics and in computer science, this approach has recently seen rapid development and application in the cognitive sciences. Here, the theory of rationality plays a dual role, both as a framework for normative assessment (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reasoning Studies. From Single Norms to Individual Differences.Niels Skovgaard-Olsen - 2022 - Dissertation, University of Freiburg
    Habilitation thesis in psychology. The book consists of a collection of reasoning studies. The experimental investigations will take us from people’s reasoning about probabilities, entailments, pragmatic factors, argumentation, and causality to morality. An overarching theme of the book is norm pluralism and individual differences in rationality research.
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘The Innocent v The Fickle Few’: How Jurors Understand Random-Match-Probabilities and Judges’ Directions when Reasoning about DNA and Refuting Evidence.Michelle B. Cowley-Cunningham - 2017 - Journal of Forensic Science and Criminal Investigation 3 (5):April/May 2017.
    DNA evidence is one of the most significant modern advances in the search for truth since the cross examination, but its format as a random-match-probability makes it difficult for people to assign an appropriate probative value (Koehler, 2001). While Frequentist theories propose that the presentation of the match as a frequency rather than a probability facilitates more accurate assessment (e.g., Slovic et al., 2000), Exemplar-Cueing Theory predicts that the subjective weight assigned may be affected by the frequency or probability format, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the category adjustment model: another look at Huttenlocher, Hedges, and Vevea (2000).Sean Duffy & John Smith - 2020 - Mind and Society 19 (1):163-193.
    Huttenlocher et al. (J Exp Psychol Gen 129:220–241, 2000) introduce the category adjustment model (CAM). Given that participants imperfectly remember stimuli (which we refer to as “targets”), CAM holds that participants maximize accuracy by using information about the distribution of the targets to improve their judgments. CAM predicts that judgments will be a weighted average of the imperfect memory of the target and the mean of the distribution of targets. Huttenlocher et al. (2000) report on three experiments and conclude that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can resources save rationality? ‘Anti-Bayesian’ updating in cognition and perception.Eric Mandelbaum, Isabel Won, Steven Gross & Chaz Firestone - 2020 - Behavioral and Brain Sciences 143:e16.
    Resource rationality may explain suboptimal patterns of reasoning; but what of “anti-Bayesian” effects where the mind updates in a direction opposite the one it should? We present two phenomena — belief polarization and the size-weight illusion — that are not obviously explained by performance- or resource-based constraints, nor by the authors’ brief discussion of reference repulsion. Can resource rationality accommodate them?
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cognitive and Computational Complexity: Considerations from Mathematical Problem Solving.Markus Pantsar - 2019 - Erkenntnis 86 (4):961-997.
    Following Marr’s famous three-level distinction between explanations in cognitive science, it is often accepted that focus on modeling cognitive tasks should be on the computational level rather than the algorithmic level. When it comes to mathematical problem solving, this approach suggests that the complexity of the task of solving a problem can be characterized by the computational complexity of that problem. In this paper, I argue that human cognizers use heuristic and didactic tools and thus engage in cognitive processes that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Norm Conflicts and Conditionals.Niels Skovgaard-Olsen, David Kellen, Ulrike Hahn & Karl Christoph Klauer - 2019 - Psychological Review 126 (5):611-633.
    Suppose that two competing norms, N1 and N2, can be identified such that a given person’s response can be interpreted as correct according to N1 but incorrect according to N2. Which of these two norms, if any, should one use to interpret such a response? In this paper we seek to address this fundamental problem by studying individual variation in the interpretation of conditionals by establishing individual profiles of the participants based on their case judgments and reflective attitudes. To investigate (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Rationality: Constraints and Contexts.Timothy Joseph Lane & Tzu-Wei Hung (eds.) - 2016 - London, U.K.: Elsevier Academic Press.
    "Rationality: Contexts and Constraints" is an interdisciplinary reappraisal of the nature of rationality. In method, it is pluralistic, drawing upon the analytic approaches of philosophy, linguistics, neuroscience, and more. These methods guide exploration of the intersection between traditional scholarship and cutting-edge philosophical or scientific research. In this way, the book contributes to development of a suitably revised, comprehensive understanding of rationality, one that befits the 21st century, one that is adequately informed by recent investigations of science, pathology, non-human thought, emotion, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predictive brains: forethought and the levels of explanation.Giuseppe Boccignone & Roberto Cordeschi - 2012 - Frontiers in Psychology 3.
    Is any unified theory of brain function possible? Following a line of thought dat- ing back to the early cybernetics (see, e.g., Cordeschi, 2002), Clark (in press) has proposed the action-oriented Hierarchical Predictive Coding (HPC) as the account to be pursued in the effort of gain- ing the “Grand Unified Theory of the Mind”—or “painting the big picture,” as Edelman (2012) put it. Such line of thought is indeed appealing, but to be effectively pursued it should be confronted with experimental (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Editor's Introduction and Review: Coordination and Context in Cognitive Science.Christopher T. Kello - 2018 - Topics in Cognitive Science 10 (1):6-17.
    The literature on coordination within and between individuals is reviewed, with an emphasis on the inherent transience of coordination patterns in behavioral activity. This transience is integral to understanding cognitive activity as flexible patterns of coordination in brain, body, and environment. Kello reviews the articles in this special issue as contributions to understanding the role of context in shaping or interpreting coordination patterns in human behavior.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Character and theory of mind: an integrative approach.Evan Westra - 2018 - Philosophical Studies 175 (5):1217-1241.
    Traditionally, theories of mindreading have focused on the representation of beliefs and desires. However, decades of social psychology and social neuroscience have shown that, in addition to reasoning about beliefs and desires, human beings also use representations of character traits to predict and interpret behavior. While a few recent accounts have attempted to accommodate these findings, they have not succeeded in explaining the relation between trait attribution and belief-desire reasoning. On my account, character-trait attribution is part of a hierarchical system (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Bayesian reverse-engineering considered as a research strategy for cognitive science.Carlos Zednik & Frank Jäkel - 2016 - Synthese 193 (12):3951-3985.
    Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Rational analysis, intractability, and the prospects of ‘as if’-explanations.Iris van Rooij, Johan Kwisthout, Todd Wareham & Cory Wright - 2018 - Synthese 195 (2):491-510.
    Despite their success in describing and predicting cognitive behavior, the plausibility of so-called ‘rational explanations’ is often contested on the grounds of computational intractability. Several cognitive scientists have argued that such intractability is an orthogonal pseudoproblem, however, since rational explanations account for the ‘why’ of cognition but are agnostic about the ‘how’. Their central premise is that humans do not actually perform the rational calculations posited by their models, but only act as if they do. Whether or not the problem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Subjective Probability as Sampling Propensity.Thomas Icard - 2016 - Review of Philosophy and Psychology 7 (4):863-903.
    Subjective probability plays an increasingly important role in many fields concerned with human cognition and behavior. Yet there have been significant criticisms of the idea that probabilities could actually be represented in the mind. This paper presents and elaborates a view of subjective probability as a kind of sampling propensity associated with internally represented generative models. The resulting view answers to some of the most well known criticisms of subjective probability, and is also supported by empirical work in neuroscience and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Non-­‐Redundant Contributions of Marr’s Three Levels of Analysis for Explaining Information Processing Mechanisms.William Bechtel & Oron Shagrir - 2015 - Topics in Cognitive Science 7 (2):312-322.
    Are all three of Marr's levels needed? Should they be kept distinct? We argue for the distinct contributions and methodologies of each level of analysis. It is important to maintain them because they provide three different perspectives required to understand mechanisms, especially information-processing mechanisms. The computational perspective provides an understanding of how a mechanism functions in broader environments that determines the computations it needs to perform. The representation and algorithmic perspective offers an understanding of how information about the environment is (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Naive Probability: Model‐Based Estimates of Unique Events.Sangeet S. Khemlani, Max Lotstein & Philip N. Johnson-Laird - 2015 - Cognitive Science 39 (6):1216-1258.
    We describe a dual-process theory of how individuals estimate the probabilities of unique events, such as Hillary Clinton becoming U.S. President. It postulates that uncertainty is a guide to improbability. In its computer implementation, an intuitive system 1 simulates evidence in mental models and forms analog non-numerical representations of the magnitude of degrees of belief. This system has minimal computational power and combines evidence using a small repertoire of primitive operations. It resolves the uncertainty of divergent evidence for single events, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Networks in Cognitive Science.Andrea Baronchelli, Ramon Ferrer-I.-Cancho, Romualdo Pastor-Satorras, Nick Chater & Morten H. Christiansen - 2013 - Trends in Cognitive Sciences 17 (7):348-360.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Exemplars, Prototypes, Similarities, and Rules in Category Representation: An Example of Hierarchical Bayesian Analysis.Michael D. Lee & Wolf Vanpaemel - 2008 - Cognitive Science 32 (8):1403-1424.
    This article demonstrates the potential of using hierarchical Bayesian methods to relate models and data in the cognitive sciences. This is done using a worked example that considers an existing model of category representation, the Varying Abstraction Model (VAM), which attempts to infer the representations people use from their behavior in category learning tasks. The VAM allows for a wide variety of category representations to be inferred, but this article shows how a hierarchical Bayesian analysis can provide a unifying explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The new Tweety puzzle: arguments against monistic Bayesian approaches in epistemology and cognitive science.Matthias Unterhuber & Gerhard Schurz - 2013 - Synthese 190 (8):1407-1435.
    In this paper we discuss the new Tweety puzzle. The original Tweety puzzle was addressed by approaches in non-monotonic logic, which aim to adequately represent the Tweety case, namely that Tweety is a penguin and, thus, an exceptional bird, which cannot fly, although in general birds can fly. The new Tweety puzzle is intended as a challenge for probabilistic theories of epistemic states. In the first part of the paper we argue against monistic Bayesians, who assume that epistemic states can (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On look-ahead in language: navigating a multitude of familiar paths.Shimon Edelman - unknown
    Language is a rewarding field if you are in the prediction business. A reader who is fluent in English and who knows how academic papers are typically structured will readily come up with several possible guesses as to where the title of this section could have gone, had it not been cut short by the ellipsis. Indeed, in the more natural setting of spoken language, anticipatory processing is a must: performance of machine systems for speech interpretation depends critically on the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy 
of 
the 
Cognitive 
Sciences.William Bechtel & Mitchell Herschbach - 2010 - In Fritz Allhoff (ed.), Philosophies of the Sciences. Malden, MA: Wiley‐Blackwell. pp. 239--261.
    Cognitive science is an interdisciplinary research endeavor focusing on human cognitive phenomena such as memory, language use, and reasoning. It emerged in the second half of the 20th century and is charting new directions at the beginning of the 21st century. This chapter begins by identifying the disciplines that contribute to cognitive science and reviewing the history of the interdisciplinary engagements that characterize it. The second section examines the role that mechanistic explanation plays in cognitive science, while the third focuses (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The propositional nature of human associative learning.Chris J. Mitchell, Jan De Houwer & Peter F. Lovibond - 2009 - Behavioral and Brain Sciences 32 (2):183-198.
    The past 50 years have seen an accumulation of evidence suggesting that associative learning depends on high-level cognitive processes that give rise to propositional knowledge. Yet, many learning theorists maintain a belief in a learning mechanism in which links between mental representations are formed automatically. We characterize and highlight the differences between the propositional and link approaches, and review the relevant empirical evidence. We conclude that learning is the consequence of propositional reasoning processes that cooperate with the unconscious processes involved (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Partial belief, partial intention.Richard Holton - 2008 - Mind 117 (465):27-58.
    Is a belief that one will succeed necessary for an intention? It is argued that the question has traditionally been badly posed, framed as it is in terms of all-out belief. We need instead to ask about the relation between intention and partial belief. An account of partial belief that is more psychologically realistic than the standard credence account is developed. A notion of partial intention is then developed, standing to all-out intention much as partial belief stands to all-out belief. (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • How do we know what babies know? The limits of inferring cognitive representations from visual fixation data.Isaac Davis - 2021 - Philosophical Psychology 34 (2):182-209.
    Most infant cognitive studies use visual fixation time as the measure of interest. There are, however, some serious methodological and theoretical concerns regarding what these studies reveal about infant cognition and how their results ought to be interpreted. We propose a Bayesian modeling framework which helps address these concerns. This framework allows us to more precisely formulate hypotheses about infants’ cognitive representations, formalize “linking hypotheses” that relate infants’ visual fixation behavior with stimulus complexity, and better determine what questions a given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Learning How to Generalize.Joseph L. Austerweil, Sophia Sanborn & Thomas L. Griffiths - 2019 - Cognitive Science 43 (8):e12777.
    Generalization is a fundamental problem solved by every cognitive system in essentially every domain. Although it is known that how people generalize varies in complex ways depending on the context or domain, it is an open question how people learn the appropriate way to generalize for a new context. To understand this capability, we cast the problem of learning how to generalize as a problem of learning the appropriate hypothesis space for generalization. We propose a normative mathematical framework for learning (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Throwing out the Bayesian baby with the optimal bathwater: Response to Endress.Michael C. Frank - 2013 - Cognition 128 (3):417-423.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Being Realist about Bayes, and the Predictive Processing Theory of Mind.Matteo Colombo, Lee Elkin & Stephan Hartmann - 2021 - British Journal for the Philosophy of Science 72 (1):185-220.
    Some naturalistic philosophers of mind subscribing to the predictive processing theory of mind have adopted a realist attitude towards the results of Bayesian cognitive science. In this paper, we argue that this realist attitude is unwarranted. The Bayesian research program in cognitive science does not possess special epistemic virtues over alternative approaches for explaining mental phenomena involving uncertainty. In particular, the Bayesian approach is not simpler, more unifying, or more rational than alternatives. It is also contentious that the Bayesian approach (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • What levels of explanation in the behavioural sciences?Giuseppe Boccignone & Roberto Cordeschi (eds.) - 2015 - Frontiers Media SA.
    Complex systems are to be seen as typically having multiple levels of organization. For instance, in the behavioural and cognitive sciences, there has been a long lasting trend, promoted by the seminal work of David Marr, putting focus on three distinct levels of analysis: the computational level, accounting for the What and Why issues, the algorithmic and the implementational levels specifying the How problem. However, the tremendous developments in neuroscience knowledge about processes at different scales of organization together with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bayesian Cognitive Science, Monopoly, and Neglected Frameworks.Matteo Colombo & Stephan Hartmann - 2015 - British Journal for the Philosophy of Science 68 (2):451–484.
    A widely shared view in the cognitive sciences is that discovering and assessing explanations of cognitive phenomena whose production involves uncertainty should be done in a Bayesian framework. One assumption supporting this modelling choice is that Bayes provides the best approach for representing uncertainty. However, it is unclear that Bayes possesses special epistemic virtues over alternative modelling frameworks, since a systematic comparison has yet to be attempted. Currently, it is then premature to assert that cognitive phenomena involving uncertainty are best (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • An amorphous model for morphological processing in visual comprehension based on naive discriminative learning.R. Harald Baayen, Petar Milin, Dusica Filipović Đurđević, Peter Hendrix & Marco Marelli - 2011 - Psychological Review 118 (3):438-481.
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • The Now-or-Never bottleneck: A fundamental constraint on language.Morten H. Christiansen & Nick Chater - 2016 - Behavioral and Brain Sciences 39:e62.
    Memory is fleeting. New material rapidly obliterates previous material. How, then, can the brain deal successfully with the continual deluge of linguistic input? We argue that, to deal with this “Now-or-Never” bottleneck, the brain must compress and recode linguistic input as rapidly as possible. This observation has strong implications for the nature of language processing: (1) the language system must “eagerly” recode and compress linguistic input; (2) as the bottleneck recurs at each new representational level, the language system must build (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • The learnability of abstract syntactic principles.Amy Perfors, Joshua B. Tenenbaum & Terry Regier - 2011 - Cognition 118 (3):306-338.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • How Does the Mind Work? Insights from Biology.Gary Marcus - 2009 - Topics in Cognitive Science 1 (1):145-172.
    Cognitive scientists must understand not just what the mind does, but how it does what it does. In this paper, I consider four aspects of cognitive architecture: how the mind develops, the extent to which it is or is not modular, the extent to which it is or is not optimal, and the extent to which it should or should not be considered a symbol‐manipulating device (as opposed to, say, an eliminative connectionist network). In each case, I argue that insights (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Survival in a world of probable objects: A fundamental reason for Bayesian enlightenment.Shimon Edelman & Reza Shahbazi - 2011 - Behavioral and Brain Sciences 34 (4):197-198.
    The only viable formulation of perception, thinking, and action under uncertainty is statistical inference, and the normative way of statistical inference is Bayesian. No wonder, then, that even seemingly non-Bayesian computational frameworks in cognitive science ultimately draw their justification from Bayesian considerations, as enlightened theorists know fully well.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bayesian Intractability Is Not an Ailment That Approximation Can Cure.Johan Kwisthout, Todd Wareham & Iris van Rooij - 2011 - Cognitive Science 35 (5):779-784.
    Bayesian models are often criticized for postulating computations that are computationally intractable (e.g., NP-hard) and therefore implausibly performed by our resource-bounded minds/brains. Our letter is motivated by the observation that Bayesian modelers have been claiming that they can counter this charge of “intractability” by proposing that Bayesian computations can be tractably approximated. We would like to make the cognitive science community aware of the problematic nature of such claims. We cite mathematical proofs from the computer science literature that show intractable (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Confirmation in the Cognitive Sciences: The Problematic Case of Bayesian Models. [REVIEW]Frederick Eberhardt & David Danks - 2011 - Minds and Machines 21 (3):389-410.
    Bayesian models of human learning are becoming increasingly popular in cognitive science. We argue that their purported confirmation largely relies on a methodology that depends on premises that are inconsistent with the claim that people are Bayesian about learning and inference. Bayesian models in cognitive science derive their appeal from their normative claim that the modeled inference is in some sense rational. Standard accounts of the rationality of Bayesian inference imply predictions that an agent selects the option that maximizes the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On the Origin of Cognition.Arto Annila - forthcoming - Biological Theory:1-12.
    To explain why cognition evolved requires, first and foremost, an analysis of what qualifies as an explanation. In terms of physics, causes are forces and consequences are changes in states of substance. Accordingly, any sequence of events, from photon absorption to focused awareness, chemical reactions to collective behavior, or from neuronal avalanches to niche adaptation, is understood as an evolution from one state to another toward thermodynamic balance where all forces finally tally each other. From this scale-free physics perspective, energy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Editors' Review and Introduction: Models of Rational Proof in Criminal Law.Henry Prakken, Floris Bex & Anne Ruth Mackor - 2020 - Topics in Cognitive Science 12 (4):1053-1067.
    Decisions concerning proof of facts in criminal law must be rational because of what is at stake, but the decision‐making process must also be cognitively feasible because of cognitive limitations, and it must obey the relevant legal–procedural constraints. In this topic three approaches to rational reasoning about evidence in criminal law are compared in light of these demands: arguments, probabilities, and scenarios. This is done in six case studies in which different authors analyze a manslaughter case from different theoretical perspectives, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Epistemic Irrationality in the Bayesian Brain.Daniel Williams - 2021 - British Journal for the Philosophy of Science 72 (4):913-938.
    A large body of research in cognitive psychology and neuroscience draws on Bayesian statistics to model information processing within the brain. Many theorists have noted that this research seems to be in tension with a large body of experimental results purportedly documenting systematic deviations from Bayesian updating in human belief formation. In response, proponents of the Bayesian brain hypothesis contend that Bayesian models can accommodate such results by making suitable assumptions about model parameters. To make progress in this debate, I (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Why the Conjunction Effect Is Rarely a Fallacy: How Learning Influences Uncertainty and the Conjunction Rule.Phil Maguire, Philippe Moser, Rebecca Maguire & Mark T. Keane - 2018 - Frontiers in Psychology 9.
    Download  
     
    Export citation  
     
    Bookmark  
  • On computational explanations.Anna-Mari Rusanen & Otto Lappi - 2016 - Synthese 193 (12):3931-3949.
    Computational explanations focus on information processing required in specific cognitive capacities, such as perception, reasoning or decision-making. These explanations specify the nature of the information processing task, what information needs to be represented, and why it should be operated on in a particular manner. In this article, the focus is on three questions concerning the nature of computational explanations: What type of explanations they are, in what sense computational explanations are explanatory and to what extent they involve a special, “independent” (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Learning Orthographic Structure With Sequential Generative Neural Networks.Alberto Testolin, Ivilin Stoianov, Alessandro Sperduti & Marco Zorzi - 2016 - Cognitive Science 40 (3):579-606.
    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine, a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.Matt Jones & Bradley C. Love - 2011 - Behavioral and Brain Sciences 34 (4):169-188.
    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology – namely, Behaviorism and evolutionary psychology – that set aside mechanistic explanations or make use of optimality assumptions. Through (...)
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • Endogenous versus exogenous change: Change detection, self and agency.Bruno Berberian & Axel Cleeremans - 2010 - Consciousness and Cognition 19 (1):198-214.
    The goal of this study is to characterize observers’ abilities to discriminate between endogenous and exogenous changes. To do so, we developed a new experimental paradigm. On each trial, participants were shown a dot pattern on the screen. Next, the pattern disappeared and participants were to reproduce it. Changes were surreptuously introduced in the stimulus, either by presenting participants anew with the dot pattern they had themselves produced on the previous trial or by presenting participants with a slightly different dot (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Awareness of action: Inference and prediction.James Moore - 2008 - Consciousness and Cognition 17 (1):136-144.
    This study investigates whether the conscious awareness of action is based on predictive motor control processes, or on inferential “sense-making” process that occur after the action itself. We investigated whether the temporal binding between perceptual estimates of operant actions and their effects depends on the occurrence of the effect (inferential processes) or on the prediction that the effect will occur (predictive processes). By varying the probability with which a simple manual action produced an auditory effect, we showed that both the (...)
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Architecture of the mind and libertarian paternalism: is the reversibility of system 1 nudges likely to happen?Riccardo Viale - 2019 - Mind and Society 18 (2):143-166.
    The libertarian attribute of Thaler and Sunstein’s nudge theory (Nudge: improving decisions about health, wealth, and happiness. Yale University Press, New Haven, 2008) is one of the most important features for its candidature as a new model for public policy-making. It relies on the reversibility of choices made under the influence of nudging. Since the mind is articulated into two systems, the choice taken by System 1 is always reversible because it can be overridden by the deliberative and corrective role (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Associationist Theories of Thought.Eric Mandelbaum - 2015 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Statistical inference and sensitivity to sampling in 11-month-old infants.Fei Xu & Stephanie Denison - 2009 - Cognition 112 (1):97-104.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • A human-like artificial intelligence for mathematics.Santiago Alonso-Diaz - 2024 - Mind and Society 23 (1):79-97.
    This paper provides a brief overview of findings in mathematical cognition and how a human-like AI in mathematics may look like. Then, it provides six reasons in favor of a human-like AI for mathematics: (1) human cognition, with all its limits, creates mathematics; (2) human mathematics is insightful, not merely deductive steps; (3) human cognition detects structure in the real world; (4) human cognition can tackle and detect complex problems; (5) human cognition is creative; (6) human cognition considers ethical issues. (...)
    Download  
     
    Export citation  
     
    Bookmark