Switch to: References

Add citations

You must login to add citations.
  1. Iterated multiplication in $$ VTC ^0$$ V T C 0.Emil Jeřábek - 2022 - Archive for Mathematical Logic 61 (5):705-767.
    We show that \, the basic theory of bounded arithmetic corresponding to the complexity class \, proves the \ axiom expressing the totality of iterated multiplication satisfying its recursive definition, by formalizing a suitable version of the \ iterated multiplication algorithm by Hesse, Allender, and Barrington. As a consequence, \ can also prove the integer division axiom, and the \-translation of induction and minimization for sharply bounded formulas. Similar consequences hold for the related theories \ and \. As a side (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Iterated multiplication in $$ VTC ^0$$.Emil Jeřábek - 2022 - Archive for Mathematical Logic 61 (5):705-767.
    We show that $$ VTC ^0$$, the basic theory of bounded arithmetic corresponding to the complexity class $$\mathrm {TC}^0$$, proves the $$ IMUL $$ axiom expressing the totality of iterated multiplication satisfying its recursive definition, by formalizing a suitable version of the $$\mathrm {TC}^0$$ iterated multiplication algorithm by Hesse, Allender, and Barrington. As a consequence, $$ VTC ^0$$ can also prove the integer division axiom, and (by our previous results) the $$ RSUV $$ -translation of induction and minimization for sharply (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A sharpened version of McAloon's theorem on initial segments of models of IΔ0.Paola D'Aquino - 1993 - Annals of Pure and Applied Logic 61 (1):49-62.
    A generalization is given of McAloon's result on initial segments ofmodels of GlΔ0, the fragment of Peano Arithmetic where the induction scheme is restricted to formulas with bounded quantifiers.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Δ0-complexity of the relation y = Πi ⩽ nF.Alessandro Berarducci & Paola D'Aquino - 1995 - Annals of Pure and Applied Logic 75 (1):49-56.
    We prove that if G is a Δ 0 -definable function on the natural numbers and F = Π i = 0 n G , then F is also Δ 0 -definable. Moreover, the inductive properties of F can be proved inside the theory IΔ 0.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • L'infinité des nombres premiers : une étude de cas de la pureté des méthodes.Andrew Arana - 2011 - Les Etudes Philosophiques 97 (2):193.
    Une preuve est pure si, en gros, elle ne réfère dans son développement qu’à ce qui est « proche » de, ou « intrinsèque » à l’énoncé à prouver. L’infinité des nombres premiers, un théorème classique de l’arithmétique, est un cas d’étude particulièrement riche pour les recherches philosophiques sur la pureté. Deux preuves différentes de ce résultat sont ici considérées, à savoir la preuve euclidienne classique et une preuve « topologique » plus récente proposée par Furstenberg. D’un point de vue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quadratic forms in models of IΔ0+ Ω1, Part II: Local equivalence.Paola D’Aquino & Angus Macintyre - 2011 - Annals of Pure and Applied Logic 162 (6):447-456.
    In this second paper of the series we do a local analysis of quadratic forms over completions of a non-standard model of IΔ0+Ω1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cofinal elementary extensions.James H. Schmerl - 2014 - Mathematical Logic Quarterly 60 (1-2):12-20.
    We investigate some properties of ordered structures that are related to their having cofinal elementary extensions. Special attention is paid to models of some very weak fragments of Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark