Switch to: References

Citations of:

The Myth of Hypercomputation

In Christof Teuscher (ed.), Alan Turing: Life and Legacy of a Great Thinker. Springer-Verlag. pp. 196-211 (2004)

Add citations

You must login to add citations.
  1. Why Machines Will Never Rule the World: Artificial Intelligence without Fear.Jobst Landgrebe & Barry Smith - 2022 - Abingdon, England: Routledge.
    The book’s core argument is that an artificial intelligence that could equal or exceed human intelligence—sometimes called artificial general intelligence (AGI)—is for mathematical reasons impossible. It offers two specific reasons for this claim: Human intelligence is a capability of a complex dynamic system—the human brain and central nervous system. Systems of this sort cannot be modelled mathematically in a way that allows them to operate inside a computer. In supporting their claim, the authors, Jobst Landgrebe and Barry Smith, marshal evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is Church’s Thesis Still Relevant?Jerzy Mycka & Adam Olszewski - 2020 - Studies in Logic, Grammar and Rhetoric 63 (1):31-51.
    The article analyses the role of Church’s Thesis (hereinafter CT) in the context of the development of hypercomputation research. The text begins by presenting various views on the essence of computer science and the limitations of its methods. Then CT and its importance in determining the limits of methods used by computer science is presented. Basing on the above explanations, the work goes on to characterize various proposals of hypercomputation showing their relative power in relation to the arithmetic hierarchy. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The many forms of hypercomputation.Toby Ord - 178 - Journal of Applied Mathematics and Computation 178:142-153.
    This paper surveys a wide range of proposed hypermachines, examining the resources that they require and the capabilities that they possess. 2005 Elsevier Inc. All rights reserved.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum algorithms: Philosophical lessons.Amit Hagar - 2007 - Minds and Machines 17 (2):233-247.
    I discuss the philosophical implications that the rising new science of quantum computing may have on the philosophy of computer science. While quantum algorithms leave the notion of Turing-Computability intact, they may re-describe the abstract space of computational complexity theory hence militate against the autonomous character of some of the concepts and categories of computer science.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Quantum hypercomputability?Amit Hagar & Alexandre Korolev - 2006 - Minds and Machines 16 (1):87-93.
    A recent proposal to solve the halting problem with the quantum adiabatic algorithm is criticized and found wanting. Contrary to other physical hypercomputers, where one believes that a physical process “computes” a (recursive-theoretic) non-computable function simply because one believes the physical theory that presumably governs or describes such process, believing the theory (i.e., quantum mechanics) in the case of the quantum adiabatic “hypercomputer” is tantamount to acknowledging that the hypercomputer cannot perform its task.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why There is no General Solution to the Problem of Software Verification.John Symons & Jack K. Horner - 2020 - Foundations of Science 25 (3):541-557.
    How can we be certain that software is reliable? Is there any method that can verify the correctness of software for all cases of interest? Computer scientists and software engineers have informally assumed that there is no fully general solution to the verification problem. In this paper, we survey approaches to the problem of software verification and offer a new proof for why there can be no general solution.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computers Are Syntax All the Way Down: Reply to Bozşahin.William J. Rapaport - 2019 - Minds and Machines 29 (2):227-237.
    A response to a recent critique by Cem Bozşahin of the theory of syntactic semantics as it applies to Helen Keller, and some applications of the theory to the philosophy of computer science.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is a Computer? A Survey.William J. Rapaport - 2018 - Minds and Machines 28 (3):385-426.
    A critical survey of some attempts to define ‘computer’, beginning with some informal ones, then critically evaluating those of three philosophers, and concluding with an examination of whether the brain and the universe are computers.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • (1 other version)The philosophy of computer science.Raymond Turner - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A brief critique of pure hypercomputation.Paolo Cotogno - 2009 - Minds and Machines 19 (3):391-405.
    Hypercomputation—the hypothesis that Turing-incomputable objects can be computed through infinitary means—is ineffective, as the unsolvability of the halting problem for Turing machines depends just on the absence of a definite value for some paradoxical construction; nature and quantity of computing resources are immaterial. The assumption that the halting problem is solved by oracles of higher Turing degree amounts just to postulation; infinite-time oracles are not actually solving paradoxes, but simply assigning them conventional values. Special values for non-terminating processes are likewise (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Constructibility of the Universal Wave Function.Arkady Bolotin - 2016 - Foundations of Physics 46 (10):1253-1268.
    This paper focuses on a constructive treatment of the mathematical formalism of quantum theory and a possible role of constructivist philosophy in resolving the foundational problems of quantum mechanics, particularly, the controversy over the meaning of the wave function of the universe. As it is demonstrated in the paper, unless the number of the universe’s degrees of freedom is fundamentally upper bounded or hypercomputation is physically realizable, the universal wave function is a non-constructive entity in the sense of constructive recursive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Can Ai be Intelligent?Kazimierz Trzęsicki - 2016 - Studies in Logic, Grammar and Rhetoric 48 (1):103-131.
    The aim of this paper is an attempt to give an answer to the question what does it mean that a computational system is intelligent. We base on some theses that though debatable are commonly accepted. Intelligence is conceived as the ability of tractable solving of some problems that in general are not solvable by deterministic Turing Machine.
    Download  
     
    Export citation  
     
    Bookmark  
  • Beyond Physics? On the Prospects of Finding a Meaningful Oracle.Taner Edis & Maarten Boudry - 2014 - Foundations of Science 19 (4):403-422.
    Certain enterprises at the fringes of science, such as intelligent design creationism, claim to identify phenomena that go beyond not just our present physics but any possible physical explanation. Asking what it would take for such a claim to succeed, we introduce a version of physicalism that formulates the proposition that all available data sets are best explained by combinations of “chance and necessity”—algorithmic rules and randomness. Physicalism would then be violated by the existence of oracles that produce certain kinds (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Practical Intractability: A Critique of the Hypercomputation Movement. [REVIEW]Aran Nayebi - 2014 - Minds and Machines 24 (3):275-305.
    For over a decade, the hypercomputation movement has produced computational models that in theory solve the algorithmically unsolvable, but they are not physically realizable according to currently accepted physical theories. While opponents to the hypercomputation movement provide arguments against the physical realizability of specific models in order to demonstrate this, these arguments lack the generality to be a satisfactory justification against the construction of any information-processing machine that computes beyond the universal Turing machine. To this end, I present a more (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Symbiotic Phenomenon in the Evolutive Context.Francisco Carrapiço - 2012 - In Torres Juan, Pombo Olga, Symons John & Rahman Shahid (eds.), Special sciences and the Unity of Science. Springer. pp. 113--119.
    Download  
     
    Export citation  
     
    Bookmark  
  • La deriva genética como fuerza evolutiva.Ariel Jonathan Roffé - 2015 - In J. Ahumada, N. Venturelli & S. Seno Chibeni (eds.), Selección de Trabajos del IX Encuentro AFHIC y las XXV Jornadas de Epistemología e Historia de la ciencia. pp. 615-626.
    Download  
     
    Export citation  
     
    Bookmark