Switch to: References

Add citations

You must login to add citations.
  1. Separating principles below Ramsey's theorem for pairs.Manuel Lerman, Reed Solomon & Henry Towsner - 2013 - Journal of Mathematical Logic 13 (2):1350007.
    In recent years, there has been a substantial amount of work in reverse mathematics concerning natural mathematical principles that are provable from RT, Ramsey's Theorem for Pairs. These principles tend to fall outside of the "big five" systems of reverse mathematics and a complicated picture of subsystems below RT has emerged. In this paper, we answer two open questions concerning these subsystems, specifically that ADS is not equivalent to CAC and that EM is not equivalent to RT.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • 2009 North American Annual Meeting of the Association for Symbolic Logic.Alasdair Urquhart - 2009 - Bulletin of Symbolic Logic 15 (4):441-464.
    Download  
     
    Export citation  
     
    Bookmark  
  • The polarized Ramsey’s theorem.Damir D. Dzhafarov & Jeffry L. Hirst - 2009 - Archive for Mathematical Logic 48 (2):141-157.
    We study the effective and proof-theoretic content of the polarized Ramsey’s theorem, a variant of Ramsey’s theorem obtained by relaxing the definition of homogeneous set. Our investigation yields a new characterization of Ramsey’s theorem in all exponents, and produces several combinatorial principles which, modulo bounding for ${\Sigma^0_2}$ formulas, lie (possibly not strictly) between Ramsey’s theorem for pairs and the stable Ramsey’s theorem for pairs.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Nonstandard models in recursion theory and reverse mathematics.C. T. Chong, Wei Li & Yue Yang - 2014 - Bulletin of Symbolic Logic 20 (2):170-200.
    We give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cohesive sets and rainbows.Wei Wang - 2014 - Annals of Pure and Applied Logic 165 (2):389-408.
    We study the strength of RRT32, Rainbow Ramsey Theorem for colorings of triples, and prove that RCA0 + RRT32 implies neither WKL0 nor RRT42 source. To this end, we establish some recursion theoretic properties of cohesive sets and rainbows for colorings of pairs. We show that every sequence admits a cohesive set of non-PA Turing degree; and that every ∅′-recursive sequence admits a low3 cohesive set.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Linear extensions of partial orders and reverse mathematics.Emanuele Frittaion & Alberto Marcone - 2012 - Mathematical Logic Quarterly 58 (6):417-423.
    We introduce the notion of τ-like partial order, where τ is one of the linear order types ω, ω*, ω + ω*, and ζ. For example, being ω-like means that every element has finitely many predecessors, while being ζ-like means that every interval is finite. We consider statements of the form “any τ-like partial order has a τ-like linear extension” and “any τ-like partial order is embeddable into τ” . Working in the framework of reverse mathematics, we show that these (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (Extra)Ordinary Equivalences with the Ascending/Descending Sequence Principle.Marta Fiori-Carones, Alberto Marcone, Paul Shafer & Giovanni Soldà - 2024 - Journal of Symbolic Logic 89 (1):262-307.
    We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructing sequences one step at a time.Henry Towsner - 2020 - Journal of Mathematical Logic 20 (3):2050017.
    We propose a new method for constructing Turing ideals satisfying principles of reverse mathematics below the Chain–Antichain (CAC) Principle. Using this method, we are able to prove several new separations in the presence of Weak König’s Lemma (WKL), including showing that CAC+WKL does not imply the thin set theorem for pairs, and that the principle “the product of well-quasi-orders is a well-quasi-order” is strictly between CAC and the Ascending/Descending Sequences principle, even in the presence of WKL.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A variant of Mathias forcing that preserves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document}. [REVIEW]François G. Dorais - 2012 - Archive for Mathematical Logic 51 (7-8):751-780.
    We present and analyze \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_\sigma}$$\end{document}-Mathias forcing, which is similar but tamer than Mathias forcing. In particular, we show that this forcing preserves certain weak subsystems of second-order arithmetic such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{ACA}_0}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{WKL}_0 + \mathsf{I}\Sigma^0_2}$$\end{document}, whereas Mathias forcing does not. We also show that the needed reals for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reverse mathematics and Peano categoricity.Stephen G. Simpson & Keita Yokoyama - 2013 - Annals of Pure and Applied Logic 164 (3):284-293.
    We investigate the reverse-mathematical status of several theorems to the effect that the natural number system is second-order categorical. One of our results is as follows. Define a system to be a triple A,i,f such that A is a set and i∈A and f:A→A. A subset X⊆A is said to be inductive if i∈X and ∀a ∈X). The system A,i,f is said to be inductive if the only inductive subset of A is A itself. Define a Peano system to be (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The cohesive principle and the Bolzano‐Weierstraß principle.Alexander P. Kreuzer - 2011 - Mathematical Logic Quarterly 57 (3):292-298.
    The aim of this paper is to determine the logical and computational strength of instances of the Bolzano-Weierstraß principle and a weak variant of it.We show that BW is instance-wise equivalent to the weak König’s lemma for Σ01-trees . This means that from every bounded sequence of reals one can compute an infinite Σ01-0/1-tree, such that each infinite branch of it yields an accumulation point and vice versa. Especially, this shows that the degrees d ≫ 0′ are exactly those containing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Almost Theorems of Hyperarithmetic Analysis.Richard A. Shore - forthcoming - Journal of Symbolic Logic:1-33.
    Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR $_{0}$ (and so $\Pi _{1}^{1}$ -CA $_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Open questions about Ramsey-type statements in reverse mathematics.Ludovic Patey - 2016 - Bulletin of Symbolic Logic 22 (2):151-169.
    Ramsey’s theorem states that for any coloring of then-element subsets of ℕ with finitely many colors, there is an infinite setHsuch that alln-element subsets ofHhave the same color. The strength of consequences of Ramsey’s theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey’s theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The reverse mathematics of non-decreasing subsequences.Ludovic Patey - 2017 - Archive for Mathematical Logic 56 (5-6):491-506.
    Every function over the natural numbers has an infinite subdomain on which the function is non-decreasing. Motivated by a question of Dzhafarov and Schweber, we study the reverse mathematics of variants of this statement. It turns out that this statement restricted to computably bounded functions is computationally weak and does not imply the existence of the halting set. On the other hand, we prove that it is not a consequence of Ramsey’s theorem for pairs. This statement can therefore be seen (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The uniform content of partial and linear orders.Eric P. Astor, Damir D. Dzhafarov, Reed Solomon & Jacob Suggs - 2017 - Annals of Pure and Applied Logic 168 (6):1153-1171.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On principles between ∑1- and ∑2-induction, and monotone enumerations.Alexander P. Kreuzer & Keita Yokoyama - 2016 - Journal of Mathematical Logic 16 (1):1650004.
    We show that many principles of first-order arithmetic, previously only known to lie strictly between [Formula: see text]-induction and [Formula: see text]-induction, are equivalent to the well-foundedness of [Formula: see text]. Among these principles are the iteration of partial functions of Hájek and Paris, the bounded monotone enumerations principle by Chong, Slaman, and Yang, the relativized Paris–Harrington principle for pairs, and the totality of the relativized Ackermann–Péter function. With this we show that the well-foundedness of [Formula: see text] is a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Thin Set Theorem for Pairs Implies DNR.Brian Rice - 2015 - Notre Dame Journal of Formal Logic 56 (4):595-601.
    Answering a question in the reverse mathematics of combinatorial principles, we prove that the thin set theorem for pairs ) implies the diagonally noncomputable set principle over the base axiom system $\mathrm{RCA}_{0}$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Jumps of the Degrees Below a Recursively Enumerable Degree.David R. Belanger & Richard A. Shore - 2018 - Notre Dame Journal of Formal Logic 59 (1):91-107.
    We consider the set of jumps below a Turing degree, given by JB={x':x≤a}, with a focus on the problem: Which recursively enumerable degrees a are uniquely determined by JB? Initially, this is motivated as a strategy to solve the rigidity problem for the partial order R of r.e. degrees. Namely, we show that if every high2 r.e. degree a is determined by JB, then R cannot have a nontrivial automorphism. We then defeat the strategy—at least in the form presented—by constructing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 2007 Annual Meeting of the Association for Symbolic Logic.Mirna Džamonja - 2007 - Bulletin of Symbolic Logic 13 (3):386-408.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Indecomposability of $\omega^{n}$.Jared R. Corduan & François G. Dorais - 2012 - Notre Dame Journal of Formal Logic 53 (3):373-395.
    We study the reverse mathematics of pigeonhole principles for finite powers of the ordinal $\omega$ . Four natural formulations are presented, and their relative strengths are compared. In the analysis of the pigeonhole principle for $\omega^{2}$ , we uncover two weak variants of Ramsey’s theorem for pairs.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dominating the Erdős–Moser theorem in reverse mathematics.Ludovic Patey - 2017 - Annals of Pure and Applied Logic 168 (6):1172-1209.
    Download  
     
    Export citation  
     
    Bookmark  
  • On a question of Andreas Weiermann.Henryk Kotlarski & Konrad Zdanowski - 2009 - Mathematical Logic Quarterly 55 (2):201-211.
    We prove that for each β, γ < ε0 there existsα < ε0 such that whenever A ⊆ ω is α ‐large and G: A → β is such that (∀a ∈ A)(psn(G (a)) ≤ a), then there exists a γ ‐large C ⊆ A on which G is nondecreasing. Moreover, we give upper bounds for α for small ordinals β ≤ ω (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim).
    Download  
     
    Export citation  
     
    Bookmark  
  • Primitive Recursion and the Chain Antichain Principle.Alexander P. Kreuzer - 2012 - Notre Dame Journal of Formal Logic 53 (2):245-265.
    Let the chain antichain principle (CAC) be the statement that each partial order on $\mathbb{N}$ possesses an infinite chain or an infinite antichain. Chong, Slaman, and Yang recently proved using forcing over nonstandard models of arithmetic that CAC is $\Pi^1_1$-conservative over $\text{RCA}_0+\Pi^0_1\text{-CP}$ and so in particular that CAC does not imply $\Sigma^0_2$-induction. We provide here a different purely syntactical and constructive proof of the statement that CAC (even together with WKL) does not imply $\Sigma^0_2$-induction. In detail we show using a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ramsey’s theorem for trees: the polarized tree theorem and notions of stability. [REVIEW]Damir D. Dzhafarov, Jeffry L. Hirst & Tamara J. Lakins - 2010 - Archive for Mathematical Logic 49 (3):399-415.
    We formulate a polarized version of Ramsey’s theorem for trees. For those exponents greater than 2, both the reverse mathematics and the computability theory associated with this theorem parallel that of its linear analog. For pairs, the situation is more complex. In particular, there are many reasonable notions of stability in the tree setting, complicating the analysis of the related results.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Weaker cousins of Ramsey's theorem over a weak base theory.Marta Fiori-Carones, Leszek Aleksander Kołodziejczyk & Katarzyna W. Kowalik - 2021 - Annals of Pure and Applied Logic 172 (10):103028.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Degrees bounding principles and universal instances in reverse mathematics.Ludovic Patey - 2015 - Annals of Pure and Applied Logic 166 (11):1165-1185.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • THE REVERSE MATHEMATICS OF ${\mathsf {CAC\ FOR\ TREES}}$.Julien Cervelle, William Gaudelier & Ludovic Patey - 2024 - Journal of Symbolic Logic 89 (3):1189-1211.
    ${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma ^0_2$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematical bounds for the Termination Theorem.Silvia Steila & Keita Yokoyama - 2016 - Annals of Pure and Applied Logic 167 (12):1213-1241.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The maximal linear extension theorem in second order arithmetic.Alberto Marcone & Richard A. Shore - 2011 - Archive for Mathematical Logic 50 (5-6):543-564.
    We show that the maximal linear extension theorem for well partial orders is equivalent over RCA0 to ATR0. Analogously, the maximal chain theorem for well partial orders is equivalent to ATR0 over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ramsey's Theorem for Pairs and Provably Recursive Functions.Alexander Kreuzer & Ulrich Kohlenbach - 2009 - Notre Dame Journal of Formal Logic 50 (4):427-444.
    This paper addresses the strength of Ramsey's theorem for pairs ($RT^2_2$) over a weak base theory from the perspective of 'proof mining'. Let $RT^{2-}_2$ denote Ramsey's theorem for pairs where the coloring is given by an explicit term involving only numeric variables. We add this principle to a weak base theory that includes weak König's Lemma and a substantial amount of $\Sigma^0_1$-induction (enough to prove the totality of all primitive recursive functions but not of all primitive recursive functionals). In the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Reverse Mathematics and Ramsey Properties of Partial Orderings.Jared Corduan & Marcia Groszek - 2016 - Notre Dame Journal of Formal Logic 57 (1):1-25.
    A partial ordering $\mathbb{P}$ is $n$-Ramsey if, for every coloring of $n$-element chains from $\mathbb{P}$ in finitely many colors, $\mathbb{P}$ has a homogeneous subordering isomorphic to $\mathbb{P}$. In their paper on Ramsey properties of the complete binary tree, Chubb, Hirst, and McNicholl ask about Ramsey properties of other partial orderings. They also ask whether there is some Ramsey property for pairs equivalent to $\mathit{ACA}_{0}$ over $\mathit{RCA}_{0}$. A characterization theorem for finite-level partial orderings with Ramsey properties has been proven by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On notions of computability-theoretic reduction between Π21 principles.Denis R. Hirschfeldt & Carl G. Jockusch - 2016 - Journal of Mathematical Logic 16 (1):1650002.
    Several notions of computability-theoretic reducibility between [Formula: see text] principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each [Formula: see text], there is an instance of RT[Formula: see text] all of whose solutions have PA degree over [Formula: see text] and use this to show that König’s Lemma lies strictly between RT[Formula: see text] and RT[Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Open questions in reverse mathematics.Antonio Montalbán - 2011 - Bulletin of Symbolic Logic 17 (3):431-454.
    We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.
    Download  
     
    Export citation  
     
    Bookmark   32 citations