Switch to: References

Citations of:

The principles of quantum mechanics

Oxford,: Clarendon Press (1930)

Add citations

You must login to add citations.
  1. Individuation in Quantum Mechanics and Space-Time.Gregg Jaeger - 2010 - Foundations of Physics 40 (9-10):1396-1409.
    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Individuation in Quantum Mechanics.Gregg Jaeger - 2011 - Foundations of Physics 41 (3):299-304.
    It has been claimed that the Principle of the Identity of Indiscernibles (PII) is incompatible with quantum mechanics, considered as a complete theory. Van Fraassen has argued specifically that a conflict between the two arises due to the requirements of Bose-Einstein statistics when imposed on two-particle quantum states. It is shown here that this apparent contradiction of the PII with quantum mechanics can be removed by the introduction of a natural criterion of individuality.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Invariance or equivalence: a tale of two principles.Caspar Jacobs - 2021 - Synthese 199 (3-4):9337-9357.
    The presence of symmetries in physical theories implies a pernicious form of underdetermination. In order to avoid this theoretical vice, philosophers often espouse a principle called Leibniz Equivalence, which states that symmetry-related models represent the same state of affairs. Moreover, philosophers have claimed that the existence of non-trivial symmetries motivates us to accept the Invariance Principle, which states that quantities that vary under a theory’s symmetries aren’t physically real. Leibniz Equivalence and the Invariance Principle are often seen as part of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Schrödinger equation in quantum field theory.Jamal Nazrul Islam - 1994 - Foundations of Physics 24 (5):593-630.
    Some aspects of the Schrödinger equation in quantum field theory are considered in this article. The emphasis is on the Schrödinger functional equation for Yang-Mills theory, arising mainly out of Feynman's work on (2+1)-dimensional Yang-Mills theory, which he studied with a view to explaining the confinement of gluons. The author extended Feynman's work in two earlier papers, and the present article is partly a review of Feynman's and the author's work and some further extension of the latter. The primary motivation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Newton-Wigner and Wightman localization of the photon.J. E. M. Ingall - 1996 - Foundations of Physics 26 (8):1003-1031.
    A quantum theory of the photon is developed in a natural manner. Newton-Wigner and Wightman demonstrated that the photon could not be strictly localized according to natural criteria. These investigations involved the identification of an elementary system with a uirrep of the Poincare group. We identify a particle with the localized measurement of the states satisfying the uirrep. In the case of zero mass and unit spin, the photon is identified with those components of the state that can be localized. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the electromagnetic interaction in relativistic quantum mechanics.L. P. Horwitz - 1984 - Foundations of Physics 14 (10):1027-1046.
    A fundamental problem in the construction of local electromagnetic interactions in the framework of relativistic wave equations of Klein-Gordon or Dirac type is discussed, and shown to be resolved in a relativistic quantum theory of events described by functions in a Hilbert space on the manifold of space-time. The relation, abstracted from the structure of the electromagnetic current, between sequences of events, parametrized by an evolution parameter τ (“historical time”), and the commonly accepted notion of particles is reviewed. As an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Identical particles in quantum mechanics revisited.Robert C. Hilborn & Candice L. Yuca - 2002 - British Journal for the Philosophy of Science 53 (3):355-389.
    The treatment of identical particles in quantum mechanics rests on two (related) principles: the spin-statistics connection and the Symmetrization Postulate. In light of recent theories (such as q-deformed commutators) that allow for ‘small’ violations of the spin-statistics connection and the Symmetrization Postulate, we revisit the issue of how quantum mechanics deals with identical particles and how it supports or fails to support various philosophical stances concerning individuality. As a consequence of the expanded possibilities for quantum statistics, we argue that permutation (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Entanglement, Symmetry Breaking and Collapse: Correspondences Between Quantum and Self-Organizing Dynamics.Francis Heylighen - 2021 - Foundations of Science 28 (1):85-107.
    Quantum phenomena are notoriously difficult to grasp. The present paper first reviews the most important quantum concepts in a non-technical manner: superposition, uncertainty, collapse of the wave function, entanglement and non-locality. It then tries to clarify these concepts by examining their analogues in complex, self-organizing systems. These include bifurcations, attractors, emergent constraints, order parameters and non-local correlations. They are illustrated with concrete examples that include Rayleigh–Bénard convection, social self-organization and Gestalt perception of ambiguous figures. In both cases, quantum and self-organizing, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gauge and Ghosts.Guy Hetzroni - 2021 - British Journal for the Philosophy of Science 72 (3):773-796.
    This article suggests a fresh look at gauge symmetries, with the aim of drawing a clear line between the a priori theoretical considerations involved, and some methodological and empirical non-deductive aspects that are often overlooked. The gauge argument is primarily based on a general symmetry principle expressing the idea that a change of mathematical representation should not change the form of the dynamical law. In addition, the ampliative part of the argument is based on the introduction of new degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Austere quantum mechanics as a reductive basis for chemistry.Hinne Hettema - 2012 - Foundations of Chemistry 15 (3):311-326.
    This paper analyses Richard Bader’s ‘operational’ view of quantum mechanics and the role it plays in the the explanation of chemistry. I argue that QTAIM can partially be reconstructed as an ‘austere’ form of quantum mechanics, which is in turn committed to an eliminative concept of reduction that stems from Kemeny and Oppenheim. As a reductive theory in this sense, the theory fails. I conclude that QTAIM has both a regulatory and constructive function in the theories of chemistry.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Zitterbewegung in Quantum Mechanics.David Hestenes - 2009 - Foundations of Physics 40 (1):1-54.
    The possibility that zitterbewegung opens a window to particle substructure in quantum mechanics is explored by constructing a particle model with structural features inherent in the Dirac equation. This paper develops a self-contained dynamical model of the electron as a lightlike particle with helical zitterbewegung and electromagnetic interactions. The model admits periodic solutions with quantized energy, and the correct magnetic moment is generated by charge circulation. It attributes to the electron an electric dipole moment rotating with ultrahigh frequency, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Axiomatic Quantum Mechanics and Completeness.Carsten Held - 2008 - Foundations of Physics 38 (8):707-732.
    The standard axiomatization of quantum mechanics (QM) is not fully explicit about the role of the time-parameter. Especially, the time reference within the probability algorithm (the Born Rule, BR) is unclear. From a probability principle P1 and a second principle P2 affording a most natural way to make BR precise, a logical conflict with the standard expression for the completeness of QM can be derived. Rejecting P1 is implausible. Rejecting P2 leads to unphysical results and to a conflict with a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A theory of causality: Causality=interaction (as defined by a suitable quantum field theory). [REVIEW]Adrian Heathcote - 1989 - Erkenntnis 31 (1):77 - 108.
    In this paper I put forward a suggestion for identifying causality in micro-systems with the specific quantum field theoretic interactions that occur in such systems. I first argue — along the lines of general transference theories — that such a physicalistic account is essential to an understanding of causation; I then proceed to sketch the concept of interaction as it occurs in quantum field theory and I do so from both a formal and an informal point of view. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • A pragmatist view of the metaphysics of entanglement.Richard Healey - 2016 - Synthese:1-38.
    Quantum entanglement is widely believed to be a feature of physical reality with undoubted metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum states predicts experimentally confirmed violation of Bell inequalities. Can one use these experimental (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A pragmatist view of the metaphysics of entanglement.Richard Healey - 2020 - Synthese 197 (10):4265-4302.
    Quantum entanglement is widely believed to be a feature of physical reality with undoubted (though debated) metaphysical implications. But Schrödinger introduced entanglement as a theoretical relation between representatives of the quantum states of two systems. Entanglement represents a physical relation only if quantum states are elements of physical reality. So arguments for metaphysical holism or nonseparability from entanglement rest on a questionable view of quantum theory. Assignment of entangled quantum states predicts experimentally confirmed violation of Bell inequalities. Can one use (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum mechanics and the direction of time.H. Hasegawa, T. Petrosky, I. Prigogine & S. Tasaki - 1991 - Foundations of Physics 21 (3):263-281.
    In recent papers the authors have discussed the dynamical properties of “large Poincaré systems” (LPS), that is, nonintegrable systems with a continuous spectrum (both classical and quantum). An interesting example of LPS is given by the Friedrichs model of field theory. As is well known, perturbation methods analytic in the coupling constant diverge because of resonant denominators. We show that this Poincaré “catastrophe” can be eliminated by a natural time ordering of the dynamical states. We obtain then a dynamical theory (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Phase-space path integration of the relativistic particle equations.H. Gür - 1991 - Foundations of Physics 21 (11):1305-1314.
    Hamilton-Jacobi theory is applied to find appropriate canonical transformations for the calculation of the phase-space path integrals of the relativistic particle equations. Hence, canonical transformations and Hamilton-Jacobi theory are also introduced into relativistic quantum mechanics. Moreover, from the classical physics viewpoint, it is very interesting to find and to solve the Hamilton-Jacobi equations for the relativistic particle equations.
    Download  
     
    Export citation  
     
    Bookmark  
  • Narratives of quantum theory in the age of quantum technologies.Alexei Grinbaum - 2017 - Ethics and Information Technology 19 (4):295-306.
    Quantum technologies can be presented to the public with or without introducing a strange trait of quantum theory responsible for their non-classical efficiency. Traditionally the message was centered on the superposition principle, while entanglement and properties such as contextuality have been gaining ground recently. A less theoretical approach is focused on simple protocols that enable technological applications. It results in a pragmatic narrative built with the help of the resource paradigm and principle-based reconstructions. I discuss the advantages and weaknesses of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Zeroth Law of Thermodynamics in Special Relativity.L. Gavassino - 2020 - Foundations of Physics 50 (11):1554-1586.
    We critically revisit the definition of thermal equilibrium, in its operational formulation, provided by standard thermodynamics. We show that it refers to experimental conditions which break the covariance of the theory at a fundamental level and that, therefore, it cannot be applied to the case of moving bodies. We propose an extension of this definition which is manifestly covariant and can be applied to the study of isolated systems in special relativity. The zeroth law of thermodynamics is, then, proven to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Teaching the Philosophical Interpretations of Quantum Mechanics and Quantum Chemistry Through Controversies.Andoni Garritz - 2013 - Science & Education 22 (7):1787-1807.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum Mechanics and the Principle of Least Radix Economy.Vladimir Garcia-Morales - 2015 - Foundations of Physics 45 (3):295-332.
    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Towards a Refined Depiction of Nature of Science.Igal Galili - 2019 - Science & Education 28 (3-5):503-537.
    This study considers the short list of Nature of Science features frequently published and widely known in the science education discourse. It is argued that these features were oversimplified and a refinement of the claims may enrich or sometimes reverse them. The analysis shows the need to address the range of variation in each particular aspect of NOS and to illustrate these variations with actual events from the history of science in order to adequately present the subject. Another implication of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the property structure of realist collapse interpretations of quantum mechanics and the so-called "counting anomaly".Roman Frigg - 2003 - International Studies in the Philosophy of Science 17 (1):43 – 57.
    The aim of this article is twofold. Recently, Lewis has presented an argument, now known as the "counting anomaly", that the spontaneous localization approach to quantum mechanics, suggested by Ghirardi, Rimini, and Weber, implies that arithmetic does not apply to ordinary macroscopic objects. I will take this argument as the starting point for a discussion of the property structure of realist collapse interpretations of quantum mechanics in general. At the end of this I present a proof of the fact that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Why the principle of the identity of indiscernibles is not contingently true either.Steven French - 1989 - Synthese 78 (2):141 - 166.
    Faced with strong arguments to the effect that Leibniz''sPrinciple of the Identity of Indiscernibles (PII) is not a necessary truth, many supporters of the Principle have staged a strategic retreat to the claim that it is contingently true in this, the actual, world. The purpose of this paper is to examine the status of the various forms of PII in both classical and quantum physics, and it is concluded that this latter view is at best doubtful, at worst, simply wrong.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The esperable uberty of quantum chromodynamics.Steven French - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (1):87-105.
    Within the philosophy of science there has been a great deal of rather vague talk about the 'heuristic fruitfulness' (or what Peirce called the 'esperable uberty') of theories. It is my aim in the present paper to add some precision to these discussions by linking this 'fruitfulness' to the satisfaction of certain heuristic criteria. In this manner the demarcation between 'discovery' and 'pursuit' becomes blurred. As a case study, I present the competition between the paraparticle and colour models of quarks (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Empirical logic and quantum mechanics.D. J. Foulis & C. H. Randall - 1974 - Synthese 29 (1-4):81 - 111.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the problem of systems under the influence of imperfect instruments.J. Formánek - 1995 - Foundations of Physics 25 (6):851-870.
    An algorithm for handling imperfect instruments is developed in the framework of quantum theory. As an illustration the problem of light passing through a set of imperfect polarizers is discussed. It is shown that the results obtained in this way are in agreement with experimental data.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum indeterminacy and the eigenstate-eigenvalue link.Samuel C. Fletcher & David E. Taylor - 2021 - Synthese 199 (3-4):1-32.
    Can quantum theory provide examples of metaphysical indeterminacy, indeterminacy that obtains in the world itself, independently of how one represents the world in language or thought? We provide a positive answer assuming just one constraint of orthodox quantum theory: the eigenstate-eigenvalue link. Our account adds a modal condition to preclude spurious indeterminacy in the presence of superselection sectors. No other extant account of metaphysical indeterminacy in quantum theory meets these demands.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Coming From Material Reality.Miguel Ferrero & J. L. Sánchez-Gómez - 2015 - Foundations of Science 20 (2):199-212.
    In a previous essay we demonstrated that quantum mechanical formalism is incompatible with some necessary principles of the mechanism conception still dominant in the physicist’s community. In this paper we show, based on recent empirical evidence in quantum physics, the inevitability of abandoning the old mechanism conception and to construct a new one in which physical reality is seen as a representation which refers to relations established through operations made by us in a world that we are determining. This change (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Numbers-Based Approach to a Free Particle’s Proper Spacetime.R. Ferber - 2021 - Foundations of Physics 51 (5):1-21.
    This paper contains a proposal for a free, nonzero-rest-mass particle’s proper spacetime, determined exclusively by the particle’s rest mass \ and numbers. The approach defines proper time as de Broglie time, which is isomorphic to a sequence of natural numbers \ that count de Broglie time units \\). The approach is based on defining the spatial coordinate as proper following the constructive definition of positive and negative integers as all possible differences of ordered pairs of natural numbers multiplied by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Further Review of the Incompatibility between Classical Principles and Quantum Postulates.M. Ferrero, V. Gómez Pin, D. Salgado & J. L. Sánchez-Gómez - 2013 - Foundations of Science 18 (1):125-138.
    The traditional “realist” conception of physics, according to which human concepts, laws and theories can grasp the essence of a reality in our absence , seems incompatible with quantum formalism and it most fruitful interpretation. The proof rests on the violation by quantum mechanical formalism of some fundamental principles of the classical ontology. We discuss if the conception behind Einstein’s idea of a reality in our absence, could be still maintained and at which price. We conclude that quantum mechanical formalism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Four-space formulation of Dirac's equation.A. B. Evans - 1990 - Foundations of Physics 20 (3):309-335.
    Dirac's equation is reviewed and found to be based on nonrelativistic ideas of probability. A 4-space formulation is proposed that is completely Lorentzinvariant, using probability distributions in space-time with the particle's proper time as a parameter for the evolution of the wave function. This leads to a new wave equation which implies that the proper mass of a particle is an observable, and is sharp only in stationary states. The model has a built-in arrow of time, which is associated with (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The mathematical foundations of quantum mechanics.David A. Edwards - 1979 - Synthese 42 (1):1 - 70.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dirac’s Book The Principles of Quantum Mechanics as an Alternative Way of Organizing a Theory.Antonino Drago - 2023 - Foundations of Science 28 (2):551-574.
    Authoritative appraisals have qualified this book as an “axiomatic” theory. However, given that its essential content is no more than an analogy, its theoretical organization cannot be axiomatic. Indeed, in the first edition Dirac declares that he had avoided an axiomatic presentation. Moreover, I show that the text aims to solve a basic problem (How quantum mechanics is similar to classical mechanics?). A previous paper analyzed all past theories of physics, chemistry and mathematics, presented by the respective authors non-axiomatically. Four (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Self-adjointness of momentum operators in generalized coordinates.J. M. Domingos & M. H. Caldeira - 1984 - Foundations of Physics 14 (2):147-154.
    The aim of this paper is to contribute to the clarification of concepts usually found in books on quantum mechanics, aided by knowledge from the field of the theory of operators in Hilbert space. Frequently the basic distinction between bounded and unbounded operators is not established in books on quantum mechanics. It is repeatedly overlooked that the condition for an unbounded operator to be symmetric (Hermitian) is not sufficient to make it self-adjoint. To make things worse, nearly all operators in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Laws, Dispositions, Memory: Three Hypotheses on the Order of the World.Joël Dolbeault - 2021 - Metaphysica 22 (1):101-121.
    The more science progresses, the more it is evident that the physical world presents regularities. This raises a metaphysical problem: why is the world so ordered? In the first part of the article, I attempt to clarify this problem and justify its relevance. In the following three parts, I analyze three hypotheses already formulated in philosophy in response to this problem: the hypothesis that the order of the world is explained 1) by laws of nature, 2) by dispositions of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum statistics, identical particles and correlations.Dennis Dieks - 1990 - Synthese 82 (1):127 - 155.
    It is argued that the symmetry and anti-symmetry of the wave functions of systems consisting of identical particles have nothing to do with the observational indistinguishability of these particles. Rather, a much stronger conceptual indistinguishability is at the bottom of the symmetry requirements. This can be used to argue further, in analogy to old arguments of De Broglie and Schrödinger, that the reality described by quantum mechanics has a wave-like rather than particle-like structure. The question of whether quantum statistics alone (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures.Christian de Ronde - 2016 - Foundations of Science 23 (4):621-648.
    In this paper we intend to discuss the importance of providing a physical representation of quantum superpositions which goes beyond the mere reference to mathematical structures and measurement outcomes. This proposal goes in the opposite direction to the project present in orthodox contemporary philosophy of physics which attempts to “bridge the gap” between the quantum formalism and common sense “classical reality”—precluding, right from the start, the possibility of interpreting quantum superpositions through non-classical notions. We will argue that in order to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Causality and the Modeling of the Measurement Process in Quantum Theory.Christian de Ronde - 2017 - Disputatio 9 (47):657-690.
    In this paper we provide a general account of the causal models which attempt to provide a solution to the famous measurement problem of Quantum Mechanics. We will argue that—leaving aside instrumentalism which restricts the physical meaning of QM to the algorithmic prediction of measurement outcomes—the many interpretations which can be found in the literature can be distinguished through the way they model the measurement process, either in terms of the efficient cause or in terms of the final cause. We (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness.W. M. de Muynck, W. De Baere & H. Martens - 1994 - Foundations of Physics 24 (12):1589-1664.
    The validity of the conclusion to the nonlocality of quantum mechanics, accepted widely today as the only reasonable solution to the EPR and Bell issues, is questioned and criticized. Arguments are presented which remove the compelling character of this conclusion and make clear that it is not the most obvious solution. Alternative solutions are developed which are free of the contradictions related with the nonlocality conclusion. Firstly, the dependence on the adopted interpretation is shown, with the conclusion that the alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Unspeakable Transport-What Quantum Teleportation Might be, and What it More Probably is.Jean-Michel Delhôtel - 2021 - Foundations of Science 27 (2):527-548.
    A Controlled Not variant of the standard quantum teleportation protocol affords a step-by-step analysis of what is, or can be said to be, achieved in the process in either location. Dominant interpretations of what quantum teleportation consists in and implies are reviewed in this light. Being mindful of the statistical significance of the terms and operations involved, as well as awareness of classical analogies, can help sort out what is specifically quantum-mechanical, and what is not, in so-called teleportation. What the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the quantum principles of cognitive learning.Alexandre de Castro - 2013 - Behavioral and Brain Sciences 36 (3):281-282.
    Pothos & Busemeyer's (P&B's) query about whether quantum probability can provide a foundation for the cognitive modeling embodies so many underlying implications that the subject is far from exhausted. In this brief commentary, however, I suggest that the conceptual thresholds of the meaningful learning give rise to a typical Boltzmann's weighting measure, which indicates astatistical verisimilitudeof quantum behavior in the human cognitive ensemble.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Persistent Particle Ontology for Quantum Field Theory in Terms of the Dirac Sea.Dirk-André Deckert, Michael Esfeld & Andrea Oldofredi - 2019 - British Journal for the Philosophy of Science 70 (3):747-770.
    We show that the Bohmian approach in terms of persisting particles that move on continuous trajectories following a deterministic law can be literally applied to quantum field theory. By means of the Dirac sea model—exemplified in the electron sector of the standard model neglecting radiation—we explain how starting from persisting particles, one is led to standard QFT employing creation and annihilation operators when tracking the dynamics with respect to a reference state, the so-called vacuum. Since on the level of wave (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Time symmetry and interpretation of quantum mechanics.O. Costa de Beauregard - 1976 - Foundations of Physics 6 (5):539-559.
    A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being “factlike” rather than “lawlike” (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the zigzagging causility model of EPR correlations and on the interpretation of quantum mechanics.O. Costa de Beauregard - 1988 - Foundations of Physics 18 (9):913-938.
    Being formalized inside the S-matrix scheme, the zigzagging causility model of EPR correlations has full Lorentz and CPT invariance. EPR correlations, proper or reversed, and Wheeler's smoky dragon metaphor are respectively pictured in spacetime or in the momentum-energy space, as V-shaped, A-shaped, or C-shaped ABC zigzags, with a summation at B over virtual states |B〉 〈B|. An exact “correspondence” exists between the Born-Jordan-Dirac “wavelike” algebra of transition amplitudes and the 1774 Laplace algebra of conditional probabilities, where the intermediate summations |B) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is there a reality out there?O. Costa de Beauregard - 1992 - Foundations of Physics 22 (1):121-135.
    Joseph Bertrand's 1888 evidencing that assignment of a probability depends upon what one chooses to know or not and to control or not, congruent with Grad's 1961 evidencing that statistical entropy depends upon what one deems relevant or not in formalization and measurement, radically undermine common sense realism; mean values are symbols, but symbols of what? For that very reason, recent clever conceptualizations of the quantum measurement process via partial tracing do not restore realism: How could deliberate ignorance generate a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is mathematical rigor necessary in physics?Kevin Davey - 2003 - British Journal for the Philosophy of Science 54 (3):439-463.
    Many arguments found in the physics literature involve concepts that are not well-defined by the usual standards of mathematics. I argue that physicists are entitled to employ such concepts without rigorously defining them so long as they restrict the sorts of mathematical arguments in which these concepts are involved. Restrictions of this sort allow the physicist to ignore calculations involving these concepts that might lead to contradictory results. I argue that such restrictions need not be ad hoc, but can sometimes (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Can the causal paradoxes of qm be explained in the framework of qed?György Darvas - 2009 - Foundations of Science 14 (4):273-280.
    Attemts to explain causal paradoxes of Quantum Mechanics (QM) have tried to solve the problems within the framework of Quantum Electrodynamics (QED). We will show, that this is impossible. The original theory of QED by Dirac (Proc Roy Soc A117:610, 1928) formulated in its preamble four preliminary requirements that the new theory should meet. The first of these requirements was that the theory must be causal. Causality is not to be derived as a consequence of the theory since it was (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Paraconsistent Logic of Quantum Superpositions.Newton C. A. da Costa & Christian de Ronde - 2013 - Foundations of Physics 43 (7):845-858.
    Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by ‘superposition’ in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid ‘contradiction’. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes into account contradiction, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Models and methodologies in current theoretical high-energy physics.James T. Cushing - 1982 - Synthese 50 (1):5 - 101.
    A case study of the development of quantum field theory and of S-matrix theory, from their inceptions to the present, is presented. The descriptions of science given by Kuhn and by Lakatos are compared and contrasted as they apply to this case study. The episodes of the developments of these theories are then considered as candidates for competing research programs in Lakatos' methodology of scientific research programs. Lakatos' scheme provides a reasonable overall description and a plausible assessment of the relative (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations