Switch to: References

Add citations

You must login to add citations.
  1. $K$ without the measurable.Ronald Jensen & John Steel - 2013 - Journal of Symbolic Logic 78 (3):708-734.
    We show in ZFC that if there is no proper class inner model with a Woodin cardinal, then there is an absolutely definablecore modelthat is close toVin various ways.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)The covering lemma up to a Woodin cardinal.W. J. Mitchell, E. Schimmerling & J. R. Steel - 1997 - Annals of Pure and Applied Logic 84 (2):219-255.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Some applications of short core models.Peter Koepke - 1988 - Annals of Pure and Applied Logic 37 (2):179-204.
    We survey the definition and fundamental properties of the family of short core models, which extend the core model K of Dodd and Jensen to include α-sequences of measurable cardinals . The theory is applied to various combinatorial principles to get lower bounds for their consistency strengths in terms of the existence of sequences of measurable cardinals. We consider instances of Chang's conjecture, ‘accessible’ Jónsson cardinals, the free subset property for small cardinals, a canonization property of ω ω , and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • More on the cut and choose game.Jindřich Zapletal - 1995 - Annals of Pure and Applied Logic 76 (3):291-301.
    The cut and choose game is one of the infinitary games on a complete Boolean algebra B introduced by Jech. We prove that existence of a winning strategy for II in implies semiproperness of B. If the existence of a supercompact cardinal is consistent then so is “for every 1-distributive algebra B II has a winning strategy in ”.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Consistency Strength of $$\aleph{\omega}$$ and $$\aleph{{\omega}_1}$$ Being Rowbottom Cardinals Without the Axiom of Choice.Arthur W. Apter & Peter Koepke - 2006 - Archive for Mathematical Logic 45 (6):721-737.
    We show that for all natural numbers n, the theory “ZF + DC $_{\aleph_n}$ + $\aleph_{\omega}$ is a Rowbottom cardinal carrying a Rowbottom filter” has the same consistency strength as the theory “ZFC + There exists a measurable cardinal”. In addition, we show that the theory “ZF + $\aleph_{\omega_1}$ is an ω 2-Rowbottom cardinal carrying an ω 2-Rowbottom filter and ω 1 is regular” has the same consistency strength as the theory “ZFC + There exist ω 1 measurable cardinals”. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Characterization of Generalized Příkrý Sequences.Gunter Fuchs - 2005 - Archive for Mathematical Logic 44 (8):935-971.
    A generalization of Příkrý's forcing is analyzed which adjoins to a model of ZFC a set of order type at most ω below each member of a discrete set of measurable cardinals. A characterization of generalized Příkrý generic sequences reminiscent of Mathias' criterion for Příkrý genericity is provided, together with a maximality theorem which states that a generalized Příkrý sequence almost contains every other one lying in the same extension.This forcing can be used to falsify the covering lemma for a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A minimal Prikry-type forcing for singularizing a measurable cardinal.Peter Koepke, Karen Räsch & Philipp Schlicht - 2013 - Journal of Symbolic Logic 78 (1):85-100.
    Recently, Gitik, Kanovei and the first author proved that for a classical Prikry forcing extension the family of the intermediate models can be parametrized by $\mathscr{P}(\omega)/\mathrm{finite}$. By modifying the standard Prikry tree forcing we define a Prikry-type forcing which also singularizes a measurable cardinal but which is minimal, i.e., there are \emph{no} intermediate models properly between the ground model and the generic extension. The proof relies on combining the rigidity of the tree structure with indiscernibility arguments resulting from the normality (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Jensen covering property.E. Schimmerling & W. H. Woodin - 2001 - Journal of Symbolic Logic 66 (4):1505-1523.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Small cardinals and small Efimov spaces.Will Brian & Alan Dow - 2022 - Annals of Pure and Applied Logic 173 (1):103043.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The comparison lemma.John R. Steel - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indiscernible sequences for extenders, and the singular cardinal hypothesis.Moti Gitik & William J. Mitchell - 1996 - Annals of Pure and Applied Logic 82 (3):273-316.
    We prove several results giving lower bounds for the large cardinal strength of a failure of the singular cardinal hypothesis. The main result is the following theorem: Theorem. Suppose κ is a singular strong limit cardinal and 2κ λ where λ is not the successor of a cardinal of cofinality at most κ. If cf > ω then it follows that o λ, and if cf = ωthen either o λ or {α: K o α+n} is confinal in κ for (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Axiom I 0 and higher degree theory.Xianghui Shi - 2015 - Journal of Symbolic Logic 80 (3):970-1021.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Prikry forcing and tree Prikry forcing of various filters.Tom Benhamou - 2019 - Archive for Mathematical Logic 58 (7-8):787-817.
    In this paper, we answer a question asked in Koepke et al. regarding a Mathias criteria for Tree-Prikry forcing. Also we will investigate Prikry forcing using various filters. For completeness and self inclusion reasons, we will give proofs of many known theorems.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the transversal hypothesis and the weak Kurepa hypothesis.D. J. Walker - 1988 - Journal of Symbolic Logic 53 (3):854-877.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the existence of large p-ideals.Winfried Just, A. R. D. Mathias, Karel Prikry & Petr Simon - 1990 - Journal of Symbolic Logic 55 (2):457-465.
    We prove the existence of p-ideals that are nonmeagre subsets of P(ω) under various set-theoretic assumptions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Smooth categories and global □.Ronald B. Jensen & Martin Zeman - 2000 - Annals of Pure and Applied Logic 102 (1-2):101-138.
    We shall construct a smooth category of mice and embeddings in the core model for measures of order 0. The existence of such a category implies that the global principle □ holds in K. We then prove a much stronger, the so-called condensation-coherent version of global □. The key tool of the whole construction is a new criterion on preserving soundness under condensation.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the consistency strength of ‘Accessible’ Jonsson Cardinals and of the Weak Chang Conjecture.Hans-Dieter Donder & Peter Koepke - 1983 - Annals of Pure and Applied Logic 25 (3):233-261.
    Download  
     
    Export citation  
     
    Bookmark   15 citations