Switch to: References

Add citations

You must login to add citations.
  1. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Predictions and Primitive Ontology in Quantum Foundations: A Study of Examples.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2014 - British Journal for the Philosophy of Science 65 (2):323-352.
    A major disagreement between different views about the foundations of quantum mechanics concerns whether for a theory to be intelligible as a fundamental physical theory it must involve a ‘primitive ontology’ (PO), i.e. variables describing the distribution of matter in four-dimensional space–time. In this article, we illustrate the value of having a PO. We do so by focusing on the role that the PO plays for extracting predictions from a given theory and discuss valid and invalid derivations of predictions. To (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • On the Common Structure of Bohmian Mechanics and the Ghirardi–Rimini–Weber Theory Dedicated to GianCarlo Ghirardi on the occasion of his 70th birthday.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2008 - British Journal for the Philosophy of Science 59 (3):353 - 389.
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about 'matter' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of (...)
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • The Past Hypothesis and the Nature of Physical Laws.Eddy Keming Chen - 2023 - In Barry Loewer, Brad Weslake & Eric Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _Time and Chance_. Cambridge MA: Harvard University Press. pp. 204-248.
    If the Past Hypothesis underlies the arrows of time, what is the status of the Past Hypothesis? In this paper, I examine the role of the Past Hypothesis in the Boltzmannian account and defend the view that the Past Hypothesis is a candidate fundamental law of nature. Such a view is known to be compatible with Humeanism about laws, but as I argue it is also supported by a minimal non-Humean "governing'' view. Some worries arise from the non-dynamical and time-dependent (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Is the Universe in a Mixed State?Shan Gao - 2023 - Foundations of Physics 54 (1):1-7.
    Quantum mechanics with a fundamental density matrix has been proposed and discussed recently. Moreover, it has been conjectured that the universe is not in a pure state but in a mixed state in this theory. In this paper, I argue that this mixed state conjecture has two main problems: the redundancy problem and the underdetermination problem, which are lacking in quantum mechanics with a definite initial wave function of the universe.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Wentaculus: Density Matrix Realism Meets the Arrow of Time.Eddy Keming Chen - manuscript
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. They are difficult because the fundamental dynamical laws of physics do not privilege an arrow of time, and the quantum-mechanical wave function describes a high-dimensional reality that is radically different from our ordinary experiences. -/- In this paper, I characterize and elaborate on the ``Wentaculus” theory, a new approach to time’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also dispenses with first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the quantum state in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fundamental Nomic Vagueness.Eddy Keming Chen - 2022 - Philosophical Review 131 (1):1-49.
    If there are fundamental laws of nature, can they fail to be exact? In this paper, I consider the possibility that some fundamental laws are vague. I call this phenomenon 'fundamental nomic vagueness.' I characterize fundamental nomic vagueness as the existence of borderline lawful worlds and the presence of several other accompanying features. Under certain assumptions, such vagueness prevents the fundamental physical theory from being completely expressible in the mathematical language. Moreover, I suggest that such vagueness can be regarded as (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Density Matrix Realism.Eddy Keming Chen - 2024 - In Michael E. Cuffaro & Stephan Hartmann (eds.), Open Systems: Physics, Metaphysics, and Methodology (2025: Oxford University Press). Oxford: Oxford University Press.
    Realism about quantum theory naturally leads to realism about the quantum state of the universe. It leaves open whether it is a pure state represented by a wave function, or an impure (mixed) one represented by a density matrix. I characterize and elaborate on Density Matrix Realism, the thesis that the universal quantum state is objective but can be impure. To clarify the thesis, I compare it with Wave Function Realism, explain the conditions under which they are empirically equivalent, consider (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Uniform Probability Distribution Over All Density Matrices.Eddy Keming Chen & Roderich Tumulka - 2022 - Quantum Studies: Mathematics and Foundations.
    Let ℋ be a finite-dimensional complex Hilbert space and D the set of density matrices on ℋ, i.e., the positive operators with trace 1. Our goal in this note is to identify a probability measure u on D that can be regarded as the uniform distribution over D. We propose a measure on D, argue that it can be so regarded, discuss its properties, and compute the joint distribution of the eigenvalues of a random density matrix distributed according to this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental wave function and theories with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Can quantum mechanics be shown to be incomplete in principle?Carsten Held - unknown
    The paper presents an argument for the incompleteness in principle of quantum mechanics. I introduce four principles (P0–P3) concerning the interpretation of probability, in general and in quantum mechanics, and argue that the defender of completeness must reject either P0 or all of P1–P3, which options both seem unacceptable. The problem is shown to be more fundamental than the measurement problem and to have implications for our understanding of quantum-mechanical contextuality.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A New Problem for Quantum Mechanics.Alexander Meehan - 2022 - British Journal for the Philosophy of Science 73 (3):631-661.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state (‘no hidden variables’), the control problem turns on a premise about our ability to prepare or control quantum states. After raising (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Can the wave function in configuration space be replaced by single-particle wave functions in physical space?Travis Norsen, Damiano Marian & Xavier Oriols - 2015 - Synthese 192 (10):3125-3151.
    The ontology of Bohmian mechanics includes both the universal wave function and particles. Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated—replaced by a set of single-particle pilot-wave fields living in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Theory of (Exclusively) Local Beables.Travis Norsen - 2010 - Foundations of Physics 40 (12):1858-1884.
    It is shown how, starting with the de Broglie–Bohm pilot-wave theory, one can construct a new theory of the sort envisioned by several of QM’s founders: a Theory of Exclusively Local Beables (TELB). In particular, the usual quantum mechanical wave function (a function on a high-dimensional configuration space) is not among the beables posited by the new theory. Instead, each particle has an associated “pilot-wave” field (living in physical space). A number of additional fields (also fields on physical space) maintain (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Is there density matrix realism?Shan Gao - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A New Problem for Quantum Mechanics.Alexander Meehan - 2020 - British Journal for the Philosophy of Science:000-000.
    In this article I raise a new problem for quantum mechanics, which I call the control problem. Like the measurement problem, the control problem places a fundamental constraint on quantum theories. The characteristic feature of the problem is its focus on state preparation. In particular, whereas the measurement problem turns on a premise about the completeness of the quantum state ('no hidden variables'), the control problem turns on a premise about our ability to prepare or control quantum states. After raising (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Clarifying the New Problem for Quantum Mechanics: Reply to Vaidman.Alexander Meehan - 2021 - Foundations of Physics 51 (1):1-6.
    I respond to Vaidman’s recent criticisms of my paper “A New Problem for Quantum Mechanics”.
    Download  
     
    Export citation  
     
    Bookmark   2 citations