Switch to: References

Add citations

You must login to add citations.
  1. Grounding principles for (relevant) implication.Francesca Poggiolesi - 2020 - Synthese 198 (8):7351-7376.
    Most of the logics of grounding that have so far been proposed contain grounding axioms, or grounding rules, for the connectives of conjunction, disjunction and negation, but little attention has been dedicated to the implication connective. The present paper aims at repairing this situation by proposing adequate grounding principles for relevant implication. Because of the interaction between negation and implication, new grounding principles concerning negation will also arise.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some weak fragments of {${\rm HA}$} and certain closure properties.Morteza Moniri & Mojtaba Moniri - 2002 - Journal of Symbolic Logic 67 (1):91-103.
    We show that Intuitionistic Open Induction iop is not closed under the rule DNS(∃ - 1 ). This is established by constructing a Kripke model of iop + $\neg L_y(2y > x)$ , where $L_y(2y > x)$ is universally quantified on x. On the other hand, we prove that iop is equivalent with the intuitionistic theory axiomatized by PA - plus the scheme of weak ¬¬LNP for open formulas, where universal quantification on the parameters precedes double negation. We also show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Geometrisation of First-Order Logic.Roy Dyckhoff & Sara Negri - 2015 - Bulletin of Symbolic Logic 21 (2):123-163.
    That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Subatomic Natural Deduction for a Naturalistic First-Order Language with Non-Primitive Identity.Bartosz Więckowski - 2016 - Journal of Logic, Language and Information 25 (2):215-268.
    A first-order language with a defined identity predicate is proposed whose apparatus for atomic predication is sensitive to grammatical categories of natural language. Subatomic natural deduction systems are defined for this naturalistic first-order language. These systems contain subatomic systems which govern the inferential relations which obtain between naturalistic atomic sentences and between their possibly composite components. As a main result it is shown that normal derivations in the defined systems enjoy the subexpression property which subsumes the subformula property with respect (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Anything Goes.David Ripley - 2015 - Topoi 34 (1):25-36.
    This paper consider Prior's connective Tonk from a particular bilateralist perspective. I show that there is a natural perspective from which we can see Tonk and its ilk as perfectly well-defined pieces of vocabulary; there is no need for restrictions to bar things like Tonk.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • How to assign ordinal numbers to combinatory terms with polymorphic types.William R. Stirton - 2012 - Archive for Mathematical Logic 51 (5):475-501.
    The article investigates a system of polymorphically typed combinatory logic which is equivalent to Gödel’s T. A notion of (strong) reduction is defined over terms of this system and it is proved that the class of well-formed terms is closed under both bracket abstraction and reduction. The main new result is that the number of contractions needed to reduce a term to normal form is computed by an ε 0-recursive function. The ordinal assignments used to obtain this result are also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Socratic Trees.Dorota Leszczyńska-Jasion, Mariusz Urbański & Andrzej Wiśniewski - 2013 - Studia Logica 101 (5):959-986.
    The method of Socratic proofs (SP-method) simulates the solving of logical problem by pure questioning. An outcome of an application of the SP-method is a sequence of questions, called a Socratic transformation. Our aim is to give a method of translation of Socratic transformations into trees. We address this issue both conceptually and by providing certain algorithms. We show that the trees which correspond to successful Socratic transformations—that is, to Socratic proofs—may be regarded, after a slight modification, as Gentzen-style proofs. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Buchholz Derivation System for the Ordinal Analysis of KP + Π₃-Reflection.Markus Michelbrink - 2006 - Journal of Symbolic Logic 71 (4):1237 - 1283.
    In this paper we introduce a notation system for the infinitary derivations occurring in the ordinal analysis of KP + Π₃-Reflection due to Michael Rathjen. This allows a finitary ordinal analysis of KP + Π₃-Reflection. The method used is an extension of techniques developed by Wilfried Buchholz, namely operator controlled notation systems for RS∞-derivations. Similarly to Buchholz we obtain a characterisation of the provably recursive functions of KP + Π₃-Reflection as <-recursive functions where < is the ordering on Rathjen's ordinal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizing Kripke’s Theory of Truth.Volker Halbach & Leon Horsten - 2006 - Journal of Symbolic Logic 71 (2):677 - 712.
    We investigate axiomatizations of Kripke's theory of truth based on the Strong Kleene evaluation scheme for treating sentences lacking a truth value. Feferman's axiomatization KF formulated in classical logic is an indirect approach, because it is not sound with respect to Kripke's semantics in the straightforward sense: only the sentences that can be proved to be true in KF are valid in Kripke's partial models. Reinhardt proposed to focus just on the sentences that can be proved to be true in (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Admissibility of structural rules for contraction-free systems of intuitionistic logic.Roy Dyckhoff & Sara Negri - 2000 - Journal of Symbolic Logic 65 (4):1499-1518.
    We give a direct proof of admissibility of cut and contraction for the contraction-free sequent calculus G4ip for intuitionistic propositional logic and for a corresponding multi-succedent calculus: this proof extends easily in the presence of quantifiers, in contrast to other, indirect, proofs. i.e., those which use induction on sequent weight or appeal to admissibility of rules in other calculi.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The axiom of choice and combinatory logic.Andrea Cantini - 2003 - Journal of Symbolic Logic 68 (4):1091-1108.
    We combine a variety of constructive methods (including forcing, realizability, asymmetric interpretation), to obtain consistency results concerning combinatory logic with extensionality and (forms of) the axiom of choice.
    Download  
     
    Export citation  
     
    Bookmark  
  • Explicit provability and constructive semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Indirect Proof and Inversions of Syllogisms.Roy Dyckhoff - 2019 - Bulletin of Symbolic Logic 25 (2):196-207.
    By considering the new notion of theinversesof syllogisms such asBarbaraandCelarent, we show how the rule ofIndirect Proof, in the form (no multiple or vacuous discharges) used by Aristotle, may be dispensed with, in a system comprising four basic rules of subalternation or conversion and six basic syllogisms.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Completeness via correspondence for extensions of the logic of paradox.Barteld Kooi & Allard Tamminga - 2012 - Review of Symbolic Logic 5 (4):720-730.
    Taking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The logic of justification.Sergei Artemov - 2008 - Review of Symbolic Logic 1 (4):477-513.
    We describe a general logical framework, Justification Logic, for reasoning about epistemic justification. Justification Logic is based on classical propositional logic augmented by justification assertions t: F that read t is a justification for F. Justification Logic absorbs basic principles originating from both mainstream epistemology and the mathematical theory of proofs. It contributes to the studies of the well-known Justified True Belief vs. Knowledge problem. We state a general Correspondence Theorem showing that behind each epistemic modal logic, there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Atomic polymorphism.Fernando Ferreira & Gilda Ferreira - 2013 - Journal of Symbolic Logic 78 (1):260-274.
    It has been known for six years that the restriction of Girard's polymorphic system $\text{\bfseries\upshape F}$ to atomic universal instantiations interprets the full fragment of the intuitionistic propositional calculus. We firstly observe that Tait's method of “convertibility” applies quite naturally to the proof of strong normalization of the restricted Girard system. We then show that each $\beta$-reduction step of the full intuitionistic propositional calculus translates into one or more $\beta\eta$-reduction steps in the restricted Girard system. As a consequence, we obtain (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On constructing a logic for the notion of complete and immediate formal grounding.Francesca Poggiolesi - 2018 - Synthese 195 (3):1231-1254.
    In Poggiolesi we have introduced a rigorous definition of the notion of complete and immediate formal grounding; in the present paper our aim is to construct a logic for the notion of complete and immediate formal grounding based on that definition. Our logic will have the form of a calculus of natural deduction, will be proved to be sound and complete and will allow us to have fine-grained grounding principles.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Constructibility of the Universal Wave Function.Arkady Bolotin - 2016 - Foundations of Physics 46 (10):1253-1268.
    This paper focuses on a constructive treatment of the mathematical formalism of quantum theory and a possible role of constructivist philosophy in resolving the foundational problems of quantum mechanics, particularly, the controversy over the meaning of the wave function of the universe. As it is demonstrated in the paper, unless the number of the universe’s degrees of freedom is fundamentally upper bounded or hypercomputation is physically realizable, the universal wave function is a non-constructive entity in the sense of constructive recursive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural Deduction Calculi and Sequent Calculi for Counterfactual Logics.Francesca Poggiolesi - 2016 - Studia Logica 104 (5):1003-1036.
    In this paper we present labelled sequent calculi and labelled natural deduction calculi for the counterfactual logics CK + {ID, MP}. As for the sequent calculi we prove, in a semantic manner, that the cut-rule is admissible. As for the natural deduction calculi we prove, in a purely syntactic way, the normalization theorem. Finally, we demonstrate that both calculi are sound and complete with respect to Nute semantics [12] and that the natural deduction calculi can be effectively transformed into the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Cut Elimination in the Presence of Axioms.Sara Negri & Jan Von Plato - 1998 - Bulletin of Symbolic Logic 4 (4):418-435.
    A way is found to add axioms to sequent calculi that maintains the eliminability of cut, through the representation of axioms as rules of inference of a suitable form. By this method, the structural analysis of proofs is extended from pure logic to free-variable theories, covering all classical theories, and a wide class of constructive theories. All results are proved for systems in which also the rules of weakening and contraction can be eliminated. Applications include a system of predicate logic (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • A Note on the Relation Between Formal and Informal Proof.Jörgen Sjögren - 2010 - Acta Analytica 25 (4):447-458.
    Using Carnap’s concept explication, we propose a theory of concept formation in mathematics. This theory is then applied to the problem of how to understand the relation between the concepts formal proof and informal, mathematical proof.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A dialogical route to logical pluralism.Rohan French - 2019 - Synthese 198 (Suppl 20):4969-4989.
    This paper argues that adopting a particular dialogical account of logical consequence quite directly gives rise to an interesting form of logical pluralism, the form of pluralism in question arising out of the requirement that deductive proofs be explanatory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A decidable theory of type assignment.William R. Stirton - 2013 - Archive for Mathematical Logic 52 (5-6):631-658.
    This article investigates a theory of type assignment (assigning types to lambda terms) called ETA which is intermediate in strength between the simple theory of type assignment and strong polymorphic theories like Girard’s F (Proofs and types. Cambridge University Press, Cambridge, 1989). It is like the simple theory and unlike F in that the typability and type-checking problems are solvable with respect to ETA. This is proved in the article along with three other main results: (1) all primitive recursive functionals (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An ecumenical notion of entailment.Elaine Pimentel, Luiz Carlos Pereira & Valeria de Paiva - 2019 - Synthese 198 (S22):5391-5413.
    Much has been said about intuitionistic and classical logical systems since Gentzen’s seminal work. Recently, Prawitz and others have been discussing how to put together Gentzen’s systems for classical and intuitionistic logic in a single unified system. We call Prawitz’ proposal the Ecumenical System, following the terminology introduced by Pereira and Rodriguez. In this work we present an Ecumenical sequent calculus, as opposed to the original natural deduction version, and state some proof theoretical properties of the system. We reason that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Propositional quantifiers in labelled natural deduction for normal modal logic.Matteo Pascucci - 2019 - Logic Journal of the IGPL 27 (6):865-894.
    This article concerns the treatment of propositional quantification in a framework of labelled natural deduction for modal logic developed by Basin, Matthews and Viganò. We provide a detailed analysis of a basic calculus that can be used for a proof-theoretic rendering of minimal normal multimodal systems with quantification over stable domains of propositions. Furthermore, we consider variations of the basic calculus obtained via relational theories and domain theories allowing for quantification over possibly unstable domains of propositions. The main result of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof Complexity and Textual Cohesion.Eli Dresner - 2015 - Journal of Logic, Language and Information 24 (1):53-64.
    In the first section of this paper I define a set of measures for proof complexity, which combine measures in terms of length and space. In the second section these measures are generalized to the broader category of formal texts. In the third section of the paper I outline several applications of the proposed theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • Are Uniqueness and Deducibility of Identicals the Same?Alberto Naibo & Mattia Petrolo - 2014 - Theoria 81 (2):143-181.
    A comparison is given between two conditions used to define logical constants: Belnap's uniqueness and Hacking's deducibility of identicals. It is shown that, in spite of some surface similarities, there is a deep difference between them. On the one hand, deducibility of identicals turns out to be a weaker and less demanding condition than uniqueness. On the other hand, deducibility of identicals is shown to be more faithful to the inferentialist perspective, permitting definition of genuinely proof-theoretical concepts. This kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Truth in a Logic of Formal Inconsistency: How classical can it get?Lavinia Picollo - 2020 - Logic Journal of the IGPL 28 (5):771-806.
    Weakening classical logic is one of the most popular ways of dealing with semantic paradoxes. Their advocates often claim that such weakening does not affect non-semantic reasoning. Recently, however, Halbach and Horsten have shown that this is actually not the case for Kripke’s fixed-point theory based on the Strong Kleene evaluation scheme. Feferman’s axiomatization $\textsf{KF}$ in classical logic is much stronger than its paracomplete counterpart $\textsf{PKF}$, not only in terms of semantic but also in arithmetical content. This paper compares the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Absorbing the structural rules in the sequent calculus with additional atomic rules.Franco Parlamento & Flavio Previale - 2020 - Archive for Mathematical Logic 59 (3-4):389-408.
    We show that if the structural rules are admissible over a set \ of atomic rules, then they are admissible in the sequent calculus obtained by adding the rules in \ to the multisuccedent minimal and intuitionistic \ calculi as well as to the classical one. Two applications to pure logic and to the sequent calculus with equality are presented.
    Download  
     
    Export citation  
     
    Bookmark  
  • Representing conjunctive deductions by disjunctive deductions.Kosta Došen & Zoran Petrić - 2017 - Review of Symbolic Logic 10 (1):145-157.
    Download  
     
    Export citation  
     
    Bookmark