Switch to: References

Citations of:

Mathematical Objectivity and Mathematical Objects

In C. MacDonald S. Laurence (ed.), Contemporary Readings in the Foundations of Metaphysics. Blackwell. pp. 387--403 (1998)

Add citations

You must login to add citations.
  1. An empirically feasible approach to the epistemology of arithmetic.Markus Pantsar - 2014 - Synthese 191 (17):4201-4229.
    Recent years have seen an explosion of empirical data concerning arithmetical cognition. In this paper that data is taken to be philosophically important and an outline for an empirically feasible epistemological theory of arithmetic is presented. The epistemological theory is based on the empirically well-supported hypothesis that our arithmetical ability is built on a protoarithmetical ability to categorize observations in terms of quantities that we have already as infants and share with many nonhuman animals. It is argued here that arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)What is the Benacerraf Problem?Justin Clarke-Doane - 2017 - In Fabrice Pataut Jody Azzouni, Paul Benacerraf Justin Clarke-Doane, Jacques Dubucs Sébastien Gandon, Brice Halimi Jon Perez Laraudogoitia, Mary Leng Ana Leon-Mejia, Antonio Leon-Sanchez Marco Panza, Fabrice Pataut Philippe de Rouilhan & Andrea Sereni Stuart Shapiro (eds.), New Perspectives on the Philosophy of Paul Benacerraf: Truth, Objects, Infinity (Fabrice Pataut, Editor). Springer.
    In "Mathematical Truth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There simply is no intelligible problem (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Epistemology without metaphysics.Hartry Field - 2009 - Philosophical Studies 143 (2):249 - 290.
    The paper outlines a view of normativity that combines elements of relativism and expressivism, and applies it to normative concepts in epistemology. The result is a kind of epistemological anti-realism, which denies that epistemic norms can be (in any straightforward sense) correct or incorrect; it does allow some to be better than others, but takes this to be goal-relative and is skeptical of the existence of best norms. It discusses the circularity that arises from the fact that we need to (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Fictionalism in the philosophy of mathematics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Mathematical fictionalism (or as I'll call it, fictionalism) is best thought of as a reaction to mathematical platonism. Platonism is the view that (a) there exist abstract mathematical objects (i.e., nonspatiotemporal mathematical objects), and (b) our mathematical sentences and theories provide true descriptions of such objects. So, for instance, on the platonist view, the sentence ‘3 is prime’ provides a straightforward description of a certain object—namely, the number 3—in much the same way that the sentence ‘Mars is red’ provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Platonism in metaphysics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Platonism is the view that there exist such things as abstract objects — where an abstract object is an object that does not exist in space or time and which is therefore entirely non-physical and nonmental. Platonism in this sense is a contemporary view. It is obviously related to the views of Plato in important ways, but it is not entirely clear that Plato endorsed this view, as it is defined here. In order to remain neutral on this question, the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The ethics–mathematics analogy.Justin Clarke-Doane - 2019 - Philosophy Compass 15 (1):e12641.
    Ethics and mathematics have long invited comparisons. On the one hand, both ethical and mathematical propositions can appear to be knowable a priori, if knowable at all. On the other hand, mathematical propositions seem to admit of proof, and to enter into empirical scientific theories, in a way that ethical propositions do not. In this article, I discuss apparent similarities and differences between ethical (i.e., moral) and mathematical knowledge, realistically construed -- i.e., construed as independent of human mind and languages. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Reality of Field’s Epistemological Challenge to Platonism.David Liggins - 2018 - Erkenntnis 83 (5):1027-1031.
    In the introduction to his Realism, mathematics and modality, and in earlier papers included in that collection, Hartry Field offered an epistemological challenge to platonism in the philosophy of mathematics. Justin Clarke-Doane Truth, objects, infinity: New perspectives on the philosophy of Paul Benacerraf, 2016) argues that Field’s challenge is an illusion: it does not pose a genuine problem for platonism. My aim is to show that Clarke-Doane’s argument relies on a misunderstanding of Field’s challenge.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Structures, fictions, and the explanatory epistemology of mathematics in science: Christopher Pincock: Mathematics and scientific representation. New York: Oxford University Press, 2012, 330pp, $65.00 HB.Mark Balaguer, Elaine Landry, Sorin Bangu & Christopher Pincock - 2013 - Metascience 22 (2):247-273.
    Critical notice of C. Pincock's Mathematics and Scientific Representation (2012).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quining Naturalism.Huw Price - 2007 - Journal of Philosophy 104 (8):375-402.
    Scientific naturalism is a metaphysical doctrine, a view about what there is, or what we ought to believe that there is. It maintains that natural science should be our guide in matters metaphysical: the ontology we should accept is the ontology that turns out to be required by science. Quine is often regarded as the doyen of scientific naturalists, though the supporting cast includes such giants as David Lewis and J. J. C. Smart.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Fictionalism and Mathematical Objectivity.Iulian D. Toader - 2012 - In Mircea Dumitru, Mircea Flonta & Valentin Muresan (eds.), Metaphysics and Science. Dedicated to professor Ilie Pârvu. Universty of Bucharest Press. pp. 137-158.
    This paper, written in Romanian, compares fictionalism, nominalism, and neo-Meinongianism as responses to the problem of objectivity in mathematics, and then motivates a fictionalist view of objectivity as invariance.
    Download  
     
    Export citation  
     
    Bookmark  
  • Neo-logicism? An ontological reduction of mathematics to metaphysics.Edward N. Zalta - 2000 - Erkenntnis 53 (1-2):219-265.
    In this paper, we describe "metaphysical reductions", in which the well-defined terms and predicates of arbitrary mathematical theories are uniquely interpreted within an axiomatic, metaphysical theory of abstract objects. Once certain (constitutive) facts about a mathematical theory T have been added to the metaphysical theory of objects, theorems of the metaphysical theory yield both an analysis of the reference of the terms and predicates of T and an analysis of the truth of the sentences of T. The well-defined terms and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Evolutionary Debunking Arguments in Ethics.Andreas Lech Mogensen - 2014 - Dissertation, University of Oxford
    I consider whether evolutionary explanations can debunk our moral beliefs. Most contemporary discussion in this area is centred on the question of whether debunking implications follow from our ability to explain elements of human morality in terms of natural selection, given that there has been no selection for true moral beliefs. By considering the most prominent arguments in the literature today, I offer reasons to think that debunking arguments of this kind fail. However, I argue that a successful evolutionary debunking (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Objectivity and reliability.Justin Clarke-Doane - 2017 - Canadian Journal of Philosophy 47 (6):841-855.
    Scanlon’s Being Realistic about Reasons (BRR) is a beautiful book – sleek, sophisticated, and programmatic. One of its key aims is to demystify knowledge of normative and mathematical truths. In this article, I develop an epistemological problem that Scanlon fails to explicitly address. I argue that his “metaphysical pluralism” can be understood as a response to that problem. However, it resolves the problem only if it undercuts the objectivity of normative and mathematical inquiry.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)Platonism in Metaphysics.Markn D. Balaguer - 2016 - Stanford Encyclopedia of Philosophy 1 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Nominalism and Mathematical Objectivity.Guanglong Luo - 2022 - Axiomathes 32 (3):833-851.
    We observe that Putnam’s model-theoretic argument against determinacy of the concept of second-order quantification or that of the set is harmless to the nominalist. It serves as a good motivation for the nominalist philosophy of mathematics. But in the end it can lead to a serious challenge to the nominalist account of mathematical objectivity if some minimal assumptions about the relation between mathematical objectivity and logical objectivity are made. We consider three strategies the nominalist might take to meet this challenge, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Antiphilosophy?Charles M. Djordjevic - 2019 - Metaphilosophy 50 (1-2):16-35.
    In certain philosophical quarters, a new metaphilosophical position is being discussed—antiphilosophy. Such a position seems to maintain that there is no distinction between philosophy and sophistry, reason and rhetoric, arguing and emoting. This paper examines antiphilosophy. Specifically, it aims to address three interrelated questions: Is antiphilosophy a possible metaphilosophical position? If it is, what characterizes it? And what ramifications would it have? The paper argues that antiphilosophy is possible and is best construed as an attempt to reconstruct philosophical discourse on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Of Marriage and Mathematics: Inferentialism and Social Ontology.James Henry Collin - 2023 - Topoi 42 (1):247-257.
    The semantic inferentialist account of the social institution of semantic meaning can be naturally extended to account for social ontology. I argue here that semantic inferentialism provides a framework within which mathematical ontology can be understood as social ontology, and mathematical facts as socially instituted facts. I argue further that the semantic inferentialist framework provides resources to underpin at least some aspects of the objectivity of mathematics, even when the truth of mathematical claims is understood as socially instituted.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Pluralism and Platonism.Mark Balaguer - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):379-398.
    PurposeThis paper aims to establish that a certain sort of mathematical pluralism is true. MethodsThe paper proceeds by arguing that that the best versions of mathematical Platonism and anti-Platonism both entail the relevant sort of mathematical pluralism. Result and ConclusionThis argument gives us the result that mathematical pluralism is true, and it also gives us the perhaps surprising result that mathematical Platonism and mathematical pluralism are perfectly compatible with one another.
    Download  
     
    Export citation  
     
    Bookmark   5 citations