Switch to: References

Add citations

You must login to add citations.
  1. A Logic for a Critical Attitude?Federico Boem & Stefano Bonzio - forthcoming - Logic and Logical Philosophy:1-28.
    Individuating the logic of scientific discovery appears a hopeless enterprise. Less hopeless is trying to figure out a logical way to model the epistemic attitude distinguishing the practice of scientists. In this paper, we claim that classical logic cannot play such a descriptive role. We propose, instead, one of the three-valued logics in the Kleene family that is often classified as the less attractive one, namely Hallden’s logic. By providing it with an appropriate epistemic interpretation, we can informally model the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Vidal's trivalent explanations for defective conditional in mathematics.Yaroslav Petrukhin & Vasily Shangin - 2019 - Journal of Applied Non-Classical Logics 29 (1):64-77.
    ABSTRACTThe paper deals with a problem posed by Mathieu Vidal to provide a formal representation for defective conditional in mathematics Vidal, M. [. The defective conditional in mathematics. Journal of Applied Non-Classical Logics, 24, 169–179]. The key feature of defective conditional is that its truth-value is indeterminate if its antecedent is false. In particular, we are interested in two explanations given by Vidal with the use of trivalent logics. By analysing a simple argument from plane geometry, where defective conditional is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalized Correspondence Analysis for Three-Valued Logics.Yaroslav Petrukhin - 2018 - Logica Universalis 12 (3-4):423-460.
    Correspondence analysis is Kooi and Tamminga’s universal approach which generates in one go sound and complete natural deduction systems with independent inference rules for tabular extensions of many-valued functionally incomplete logics. Originally, this method was applied to Asenjo–Priest’s paraconsistent logic of paradox LP. As a result, one has natural deduction systems for all the logics obtainable from the basic three-valued connectives of LP -language) by the addition of unary and binary connectives. Tamminga has also applied this technique to the paracomplete (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Exactly true and non-falsity logics meeting infectious ones.Alex Belikov & Yaroslav Petrukhin - 2020 - Journal of Applied Non-Classical Logics 30 (2):93-122.
    In this paper, we study logical systems which represent entailment relations of two kinds. We extend the approach of finding ‘exactly true’ and ‘non-falsity’ versions of four-valued logics that emerged in series of recent works [Pietz & Rivieccio (2013). Nothing but the truth. Journal of Philosophical Logic, 42(1), 125–135; Shramko (2019). Dual-Belnap logic and anything but falsehood. Journal of Logics and their Applications, 6, 413–433; Shramko et al. (2017). First-degree entailment and its relatives. Studia Logica, 105(6), 1291–1317] to the case (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Stone-Type Representations and Dualities for Varieties of Bisemilattices.Antonio Ledda - 2018 - Studia Logica 106 (2):417-448.
    In this article we will focus our attention on the variety of distributive bisemilattices and some linguistic expansions thereof: bounded, De Morgan, and involutive bisemilattices. After extending Balbes’ representation theorem to bounded, De Morgan, and involutive bisemilattices, we make use of Hartonas–Dunn duality and introduce the categories of 2spaces and 2spaces\. The categories of 2spaces and 2spaces\ will play with respect to the categories of distributive bisemilattices and De Morgan bisemilattices, respectively, a role analogous to the category of Stone spaces (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bochvar's Three-Valued Logic and Literal Paralogics: Their Lattice and Functional Equivalence.Alexander Karpenko & Natalya Tomova - 2017 - Logic and Logical Philosophy 26 (2):207-235.
    In the present paper, various features of the class of propositional literal paralogics are considered. Literal paralogics are logics in which the paraproperties such as paraconsistence, paracompleteness and paranormality, occur only at the level of literals; that is, formulas that are propositional letters or their iterated negations. We begin by analyzing Bochvar’s three-valued nonsense logic B3, which includes two isomorphs of the propositional classical logic CPC. The combination of these two ‘strong’ isomorphs leads to the construction of two famous paralogics (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Immune Logics.Bruno da Re & Damian Szmuc - 2021 - Australasian Journal of Logic 18 (1):29-52.
    This article is concerned with an exploration of a family of systems—called immune logics—that arise from certain dualizations of the well-known family of infectious logics. The distinctive feature of the semantic of infectious logics is the presence of a certain “infectious” semantic value, by which two different though equivalent things are meant. On the one hand, it is meant that these values are zero elements for all the operations in the underlying algebraic structure. On the other hand, it is meant (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On Paraconsistent Weak Kleene Logic: Axiomatisation and Algebraic Analysis.Stefano Bonzio, José Gil-Férez, Francesco Paoli & Luisa Peruzzi - 2017 - Studia Logica 105 (2):253-297.
    Paraconsistent Weak Kleene logic is the 3-valued logic with two designated values defined through the weak Kleene tables. This paper is a first attempt to investigate PWK within the perspective and methods of abstract algebraic logic. We give a Hilbert-style system for PWK and prove a normal form theorem. We examine some algebraic structures for PWK, called involutive bisemilattices, showing that they are distributive as bisemilattices and that they form a variety, \, generated by the 3-element algebra WK; we also (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • On the Structure of Bochvar Algebras.Stefano Bonzio & Michele Pra Baldi - forthcoming - Review of Symbolic Logic:1-27.
    Bochvar algebras consist of the quasivariety $\mathsf {BCA}$ playing the role of equivalent algebraic semantics for Bochvar (external) logic, a logical formalism introduced by Bochvar [4] in the realm of (weak) Kleene logics. In this paper, we provide an algebraic investigation of the structure of Bochvar algebras. In particular, we prove a representation theorem based on Płonka sums and investigate the lattice of subquasivarieties, showing that Bochvar (external) logic has only one proper extension (apart from classical logic), algebraized by the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Containment Logics: Algebraic Completeness and Axiomatization.Stefano Bonzio & Michele Pra Baldi - 2021 - Studia Logica 109 (5):969-994.
    The paper studies the containment companion of a logic \. This consists of the consequence relation \ which satisfies all the inferences of \, where the variables of the conclusion are contained into those of the set of premises, in case this is not inconsistent. In accordance with the work started in [10], we show that a different generalization of the Płonka sum construction, adapted from algebras to logical matrices, allows to provide a matrix-based semantics for containment logics. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Logical Modeling of Severe Ignorance.Stefano Bonzio, Vincenzo Fano & Pierluigi Graziani - 2023 - Journal of Philosophical Logic 52 (4):1053-1080.
    In the logical context, ignorance is traditionally defined recurring to epistemic logic. In particular, ignorance is essentially interpreted as “lack of knowledge”. This received view has - as we point out - some problems, in particular we will highlight how it does not allow to express a type of content-theoretic ignorance, i.e. an ignorance of φ that stems from an unfamiliarity with its meaning. Contrarily to this trend, in this paper, we introduce and investigate a modal logic having a primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Duality for Involutive Bisemilattices.Stefano Bonzio, Andrea Loi & Luisa Peruzzi - 2019 - Studia Logica 107 (2):423-444.
    We establish a duality between the category of involutive bisemilattices and the category of semilattice inverse systems of Stone spaces, using Stone duality from one side and the representation of involutive bisemilattices as Płonka sum of Boolean algebras, from the other. Furthermore, we show that the dual space of an involutive bisemilattice can be viewed as a GR space with involution, a generalization of the spaces introduced by Gierz and Romanowska equipped with an involution as additional operation.
    Download  
     
    Export citation  
     
    Bookmark   10 citations