Switch to: References

Add citations

You must login to add citations.
  1. Canonical formulas for wk4.Guram Bezhanishvili & Nick Bezhanishvili - 2012 - Review of Symbolic Logic 5 (4):731-762.
    We generalize the theory of canonical formulas for K4, the logic of transitive frames, to wK4, the logic of weakly transitive frames. Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal subframe logics, the new notions of transitive subframe and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Finite Axiomatizability of Transitive Modal Logics of Finite Depth and Width with Respect to Proper-Successor-Equivalence.Yan Zhang & X. U. Ming - forthcoming - Review of Symbolic Logic:1-14.
    This paper proves the finite axiomatizability of transitive modal logics of finite depth and finite width w.r.t. proper-successor-equivalence. The frame condition of the latter requires, in a rooted transitive frame, a finite upper bound of cardinality for antichains of points with different sets of proper successors. The result generalizes Rybakov’s result of the finite axiomatizability of extensions of$\mathbf {S4}$of finite depth and finite width.
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatizability of Propositionally Quantified Modal Logics on Relational Frames.Peter Fritz - 2024 - Journal of Symbolic Logic 89 (2):758-793.
    Propositional modal logic over relational frames is naturally extended with propositional quantifiers by letting them range over arbitrary sets of worlds of the relevant frame. This is also known as second-order propositional modal logic. The propositionally quantified modal logic of a class of relational frames is often not axiomatizable, although there are known exceptions, most notably the case of frames validating the strong modal logic $\mathrm {S5}$. Here, we develop new general methods with which many of the open questions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Consequence Relations Extending $mathbf{S4.3}$: An Application of Projective Unification.Wojciech Dzik & Piotr Wojtylak - 2016 - Notre Dame Journal of Formal Logic 57 (4):523-549.
    We characterize all finitary consequence relations over S4.3, both syntactically, by exhibiting so-called passive rules that extend the given logic, and semantically, by providing suitable strongly adequate classes of algebras. This is achieved by applying an earlier result stating that a modal logic L extending S4 has projective unification if and only if L contains S4.3. In particular, we show that these consequence relations enjoy the strong finite model property, and are finitely based. In this way, we extend the known (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An ascending chain of S4 logics.Kit Fine - 1974 - Theoria 40 (2):110-116.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Logics containing k4. part II.Kit Fine - 1985 - Journal of Symbolic Logic 50 (3):619-651.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Bull's theorem by the method of diagrams.Giovanna Corsi - 1999 - Studia Logica 62 (2):163-176.
    We show how to use diagrams in order to obtain straightforward completeness theorems for extensions of K4.3 and a very simple and constructive proof of Bull's theorem: every normal extension of S4.3 has the finite model property.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some kinds of modal completeness.J. F. A. K. Benthem - 1980 - Studia Logica 39 (2-3):125 - 141.
    In the modal literature various notions of completeness have been studied for normal modal logics. Four of these are defined here, viz. (plain) completeness, first-order completeness, canonicity and possession of the finite model property — and their connections are studied. Up to one important exception, all possible inclusion relations are either proved or disproved. Hopefully, this helps to establish some order in the jungle of concepts concerning modal logics. In the course of the exposition, the interesting properties of first-order definability (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • FMP-Ensuring Logics, RA-Ensuring Logics and FA-Ensuring Logics in $$\text {NExtK4.3}$$.Ming Xu - 2023 - Studia Logica 111 (6):899-946.
    This paper studies modal logics whose extensions all have the finite model property, those whose extensions are all recursively axiomatizable, and those whose extensions are all finitely axiomatizable. We call such logics FMP-ensuring, RA-ensuring and FA-ensuring respectively, and prove necessary and sufficient conditions of such logics in $$\mathsf {NExtK4.3}$$. Two infinite descending chains $$\{{\textbf{S}}_{k}\}_{k\in \omega }$$ and $$\{{\textbf{S}} _{k}^{*}\}_{k\in \omega }$$ of logics are presented, in terms of which the necessary and sufficient conditions are formulated as follows: A logic in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Book Review: V. V. Rybakov. Admissibility of Logical Inference Rules. [REVIEW]Marcus Kracht - 1999 - Notre Dame Journal of Formal Logic 40 (4):578-587.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Some kinds of modal completeness.J. F. A. K. van Benthem - 1980 - Studia Logica 39 (2):125-141.
    In the modal literature various notions of "completeness" have been studied for normal modal logics. Four of these are defined here, viz. completeness, first-order completeness, canonicity and possession of the finite model property -- and their connections are studied. Up to one important exception, all possible inclusion relations are either proved or disproved. Hopefully, this helps to establish some order in the jungle of concepts concerning modal logics. In the course of the exposition, the interesting properties of first-order definability and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Critical notice.J. F. A. K. van Benthem - 1979 - Synthese 40 (2):353-373.
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatization and completeness of lexicographic products of modal logics.Philippe Balbiani - 2011 - Journal of Applied Non-Classical Logics 21 (2):141-176.
    This paper sets out a new way of combining Kripke-complete modal logics: lexicographic product. It discusses some basic properties of the lexicographic product construction and proves axiomatization/completeness results.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Normal Extensions of G.3.Ming Xu - 2002 - Theoria 68 (2):170-176.
    In this paper we use “generic submodels” to prove that each normal extension of G.3 (K4.3W) has the finite model property, by which we establish that each proper normal extension of G.3 is G.3Altn for some n≥0.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The decidability of normal k5 logics.Michael C. Nagle - 1981 - Journal of Symbolic Logic 46 (2):319-328.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Some Normal Extensions of K4.3.Ming Xu - 2013 - Studia Logica 101 (3):583-599.
    This paper proves the finite model property and the finite axiomatizability of a class of normal modal logics extending K4.3. The frames for these logics are those for K4.3, in each of which every point has a bounded number of irreflexive successors if it is after an infinite ascending chain of (not necessarily distinct) points.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Modal logics of domains on the real plane.V. B. Shehtman - 1983 - Studia Logica 42 (1):63-80.
    This paper concerns modal logics appearing from the temporal ordering of domains in two-dimensional Minkowski spacetime. As R. Goldblatt has proved recently, the logic of the whole plane isS4.2. We consider closed or open convex polygons and closed or open domains bounded by simple differentiable curves; this leads to the logics:S4,S4.1,S4.2 orS4.1.2.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • In search of a “true” logic of knowledge: the nonmonotonic perspective.Grigori Schwarz - 1995 - Artificial Intelligence 79 (1):39-63.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)The Power of a Propositional Constant.Robert Goldblatt & Tomasz Kowalski - 2014 - Journal of Philosophical Logic 43 (1):133-152.
    Monomodal logic has exactly two maximally normal logics, which are also the only quasi-normal logics that are Post complete, and they are complete for validity in Kripke frames. Here we show that addition of a propositional constant to monomodal logic allows the construction of continuum many maximally normal logics that are not valid in any Kripke frame, or even in any complete modal algebra. We also construct continuum many quasi-normal Post complete logics that are not normal. The set of extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Almost structurally complete infinitary consequence operations extending S4.3.Wojciech Dzik & Piotr Wojtylak - 2015 - Logic Journal of the IGPL 23 (4):640-661.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Finite Model Property for Admissible Rules.Vladimir V. Rybakov, Vladimir R. Kiyatkin & Tahsin Oner - 1999 - Mathematical Logic Quarterly 45 (4):505-520.
    Our investigation is concerned with the finite model property with respect to admissible rules. We establish general sufficient conditions for absence of fmp w. r. t. admissibility which are applicable to modal logics containing K4: Theorem 3.1 says that no logic λ containing K4 with the co-cover property and of width > 2 has fmp w. r. t. admissibility. Surprisingly many, if not to say all, important modal logics of width > 2 are within the scope of this theorem–K4 itself, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The structure of lattices of subframe logics.Frank Wolter - 1997 - Annals of Pure and Applied Logic 86 (1):47-100.
    This paper investigates the structure of lattices of normal mono- and polymodal subframelogics, i.e., those modal logics whose frames are closed under a certain type of substructures. Nearly all basic modal logics belong to this class. The main lattice theoretic tool applied is the notion of a splitting of a complete lattice which turns out to be connected with the “geometry” and “topology” of frames, with Kripke completeness and with axiomatization problems. We investigate in detail subframe logics containing K4, those (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • (1 other version)The Power of a Propositional Constant.Robert Goldblatt & Tomasz Kowalski - 2012 - Journal of Philosophical Logic (1):1-20.
    Monomodal logic has exactly two maximally normal logics, which are also the only quasi-normal logics that are Post complete, and they are complete for validity in Kripke frames. Here we show that addition of a propositional constant to monomodal logic allows the construction of continuum many maximally normal logics that are not valid in any Kripke frame, or even in any complete modal algebra. We also construct continuum many quasi-normal Post complete logics that are not normal. The set of extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Stable Modal Logics.Guram Bezhanishvili, Nick Bezhanishvili & Julia Ilin - 2018 - Review of Symbolic Logic 11 (3):436-469.
    Stable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The extensions of BAlt.David Ullrich & Michael Byrd - 1977 - Journal of Philosophical Logic 6 (1):109 - 117.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hereditarily structurally complete modal logics.V. V. Rybakov - 1995 - Journal of Symbolic Logic 60 (1):266-288.
    We consider structural completeness in modal logics. The main result is the necessary and sufficient condition for modal logics over K4 to be hereditarily structurally complete: a modal logic λ is hereditarily structurally complete $\operatorname{iff} \lambda$ is not included in any logic from the list of twenty special tabular logics. Hence there are exactly twenty maximal structurally incomplete modal logics above K4 and they are all tabular.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Canonical formulas for k4. part II: Cofinal subframe logics.Michael Zakharyaschev - 1996 - Journal of Symbolic Logic 61 (2):421-449.
    Related Works: Part I: Michael Zakharyaschev. Canonical Formulas for $K4$. Part I: Basic Results. J. Symbolic Logic, Volume 57, Issue 4 , 1377--1402. Project Euclid: euclid.jsl/1183744119 Part III: Michael Zakharyaschev. Canonical Formulas for K4. Part III: The Finite Model Property. J. Symbolic Logic, Volume 62, Issue 3 , 950--975. Project Euclid: euclid.jsl/1183745306.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Analogues of Bull’s theorem for hybrid logic.Willem Conradie & Claudette Robinson - 2019 - Logic Journal of the IGPL 27 (3):281-313.
    Download  
     
    Export citation  
     
    Bookmark  
  • Tychonoff hed-spaces and Zemanian extensions of s4.3.Guram Bezhanishvili, Nick Bezhanishvili, Joel Lucero-Bryan & Jan van Mill - 2018 - Review of Symbolic Logic 11 (1):115-132.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical modal logic: A view of its evolution.Robert Goldblatt - 2003 - Journal of Applied Logic 1 (5-6):309-392.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • On linear Brouwerian logics.Zofia Kostrzycka - 2014 - Mathematical Logic Quarterly 60 (4-5):304-313.
    We define a special family of Brouwerian logics determined by linearly ordered frames. Then we prove that all logics of this family have the finite model property and are Kripke complete.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Projective formulas and unification in linear temporal logic LTLU.V. Rybakov - 2014 - Logic Journal of the IGPL 22 (4):665-672.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal companions of intermediate propositional logics.Alexander Chagrov & Michael Zakharyashchev - 1992 - Studia Logica 51 (1):49 - 82.
    This paper is a survey of results concerning embeddings of intuitionistic propositional logic and its extensions into various classical modal systems.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Finitary unification in locally tabular modal logics characterized.Wojciech Dzik, Sławomir Kost & Piotr Wojtylak - 2022 - Annals of Pure and Applied Logic 173 (4):103072.
    Download  
     
    Export citation  
     
    Bookmark   1 citation