Switch to: References

Add citations

You must login to add citations.
  1. Deference to Opaque Systems and Morally Exemplary Decisions.James Fritz - forthcoming - AI and Society:1-13.
    Many have recently argued that there are weighty reasons against making high-stakes decisions solely on the basis of recommendations from artificially intelligent (AI) systems. Even if deference to a given AI system were known to reliably result in the right action being taken, the argument goes, that deference would lack morally important characteristics: the resulting decisions would not, for instance, be based on an appreciation of right-making reasons. Nor would they be performed from moral virtue; nor would they have moral (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Artificial Intelligence, Creativity, and the Precarity of Human Connection.Lindsay Brainard - forthcoming - Oxford Intersections: Ai in Society.
    There is an underappreciated respect in which the widespread availability of generative artificial intelligence (AI) models poses a threat to human connection. My central contention is that human creativity is especially capable of helping us connect to others in a valuable way, but the widespread availability of generative AI models reduces our incentives to engage in various sorts of creative work in the arts and sciences. I argue that creative endeavors must be motivated by curiosity, and so they must disclose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Making a Murderer: How Risk Assessment Tools May Produce Rather Than Predict Criminal Behavior.Donal Khosrowi & Philippe van Basshuysen - 2024 - American Philosophical Quarterly 61 (4):309-325.
    Algorithmic risk assessment tools, such as COMPAS, are increasingly used in criminal justice systems to predict the risk of defendants to reoffend in the future. This paper argues that these tools may not only predict recidivism, but may themselves causally induce recidivism through self-fulfilling predictions. We argue that such “performative” effects can yield severe harms both to individuals and to society at large, which raise epistemic-ethical responsibilities on the part of developers and users of risk assessment tools. To meet these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explaining AI through mechanistic interpretability.Lena Kästner & Barnaby Crook - 2024 - European Journal for Philosophy of Science 14 (4):1-25.
    Recent work in explainable artificial intelligence (XAI) attempts to render opaque AI systems understandable through a divide-and-conquer strategy. However, this fails to illuminate how trained AI systems work as a whole. Precisely this kind of functional understanding is needed, though, to satisfy important societal desiderata such as safety. To remedy this situation, we argue, AI researchers should seek mechanistic interpretability, viz. apply coordinated discovery strategies familiar from the life sciences to uncover the functional organisation of complex AI systems. Additionally, theorists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Scope of the Right to Explanation.James Fritz - forthcoming - AI and Ethics.
    As opaque algorithmic systems take up a larger and larger role in shaping our lives, calls for explainability in various algorithmic systems have increased. Many moral and political philosophers have sought to vindicate these calls for explainability by developing theories on which decision-subjects—that is, individuals affected by decisions—have a moral right to the explanation of the systems that affect them. Existing theories tend to suggest that the right to explanation arises solely in virtue of facts about how decision-subjects are affected (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mapping the landscape of ethical considerations in explainable AI research.Luca Nannini, Marta Marchiori Manerba & Isacco Beretta - 2024 - Ethics and Information Technology 26 (3):1-22.
    With its potential to contribute to the ethical governance of AI, eXplainable AI (XAI) research frequently asserts its relevance to ethical considerations. Yet, the substantiation of these claims with rigorous ethical analysis and reflection remains largely unexamined. This contribution endeavors to scrutinize the relationship between XAI and ethical considerations. By systematically reviewing research papers mentioning ethical terms in XAI frameworks and tools, we investigate the extent and depth of ethical discussions in scholarly research. We observe a limited and often superficial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reliability in Machine Learning.Thomas Grote, Konstantin Genin & Emily Sullivan - 2024 - Philosophy Compass 19 (5):e12974.
    Issues of reliability are claiming center-stage in the epistemology of machine learning. This paper unifies different branches in the literature and points to promising research directions, whilst also providing an accessible introduction to key concepts in statistics and machine learning – as far as they are concerned with reliability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding via exemplification in XAI: how explaining image classification benefits from exemplars.Sara Mann - forthcoming - AI and Society:1-16.
    Artificial intelligent (AI) systems that perform image classification tasks are being used to great success in many application contexts. However, many of these systems are opaque, even to experts. This lack of understanding can be problematic for ethical, legal, or practical reasons. The research field Explainable AI (XAI) has therefore developed several approaches to explain image classifiers. The hope is to bring about understanding, e.g., regarding why certain images are classified as belonging to a particular target class. Most of these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algorithmic decision-making: the right to explanation and the significance of stakes.Lauritz Munch, Jens Christian Bjerring & Jakob Mainz - 2024 - Big Data and Society.
    The stakes associated with an algorithmic decision are often said to play a role in determining whether the decision engenders a right to an explanation. More specifically, “high stakes” decisions are often said to engender such a right to explanation whereas “low stakes” or “non-high” stakes decisions do not. While the overall gist of these ideas is clear enough, the details are lacking. In this paper, we aim to provide these details through a detailed investigation of what we will call (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Do ML models represent their targets?Emily Sullivan - forthcoming - Philosophy of Science.
    I argue that ML models used in science function as highly idealized toy models. If we treat ML models as a type of highly idealized toy model, then we can deploy standard representational and epistemic strategies from the toy model literature to explain why ML models can still provide epistemic success despite their lack of similarity to their targets.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What we owe to decision-subjects: beyond transparency and explanation in automated decision-making.David Gray Grant, Jeff Behrends & John Basl - 2023 - Philosophical Studies 2003:1-31.
    The ongoing explosion of interest in artificial intelligence is fueled in part by recently developed techniques in machine learning. Those techniques allow automated systems to process huge amounts of data, utilizing mathematical methods that depart from traditional statistical approaches, and resulting in impressive advancements in our ability to make predictions and uncover correlations across a host of interesting domains. But as is now widely discussed, the way that those systems arrive at their outputs is often opaque, even to the experts (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Are You Anthropomorphizing AI?Ali Hasan - 2024 - Blog of the American Philosophical Association.
    I argue that, given the way that AI models work and the way that ordinary human rationality works, it is very likely that people are anthropomorphizing AI, with potentially serious consequences. There are good reasons to doubt that LLMs have anything like human understanding, and even if they have representations or meaningful contents in some sense, these are unlikely to correspond to our ordinary understanding of natural language. However, there are natural, and in some ways quite rational, pressures to anthropomorphize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Intention Reconsideration in Artificial Agents: a Structured Account.Fabrizio Cariani - forthcoming - Special Issue of Phil Studies.
    An important module in the Belief-Desire-Intention architecture for artificial agents (which builds on Michael Bratman's work in the philosophy of action) focuses on the task of intention reconsideration. The theoretical task is to formulate principles governing when an agent ought to undo a prior committed intention and reopen deliberation. Extant proposals for such a principle, if sufficiently detailed, are either too task-specific or too computationally demanding. I propose that an agent ought to reconsider an intention whenever some incompatible prospect is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Justified Use of AI Decision Support in Evidence-Based Medicine: Validity, Explainability, and Responsibility.Sune Holm - forthcoming - Cambridge Quarterly of Healthcare Ethics:1-7.
    When is it justified to use opaque artificial intelligence (AI) output in medical decision-making? Consideration of this question is of central importance for the responsible use of opaque machine learning (ML) models, which have been shown to produce accurate and reliable diagnoses, prognoses, and treatment suggestions in medicine. In this article, I discuss the merits of two answers to the question. According to the Explanation View, clinicians must have access to an explanation of why an output was produced. According to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations