Switch to: References

Add citations

You must login to add citations.
  1. A Uniform Approach to Fundamental Sequences and Hierarchies.Wilfried Buchholz, Adam Cichon & Andreas Weiermann - 1994 - Mathematical Logic Quarterly 40 (2):273-286.
    In this article we give a unifying approach to the theory of fundamental sequences and their related Hardy hierarchies of number-theoretic functions and we show the equivalence of the new approach with the classical one.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • An ordinal analysis for theories of self-referential truth.Graham Emil Leigh & Michael Rathjen - 2010 - Archive for Mathematical Logic 49 (2):213-247.
    The first attempt at a systematic approach to axiomatic theories of truth was undertaken by Friedman and Sheard (Ann Pure Appl Log 33:1–21, 1987). There twelve principles consisting of axioms, axiom schemata and rules of inference, each embodying a reasonable property of truth were isolated for study. Working with a base theory of truth conservative over PA, Friedman and Sheard raised the following questions. Which subsets of the Optional Axioms are consistent over the base theory? What are the proof-theoretic strengths (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Slow consistency.Sy-David Friedman, Michael Rathjen & Andreas Weiermann - 2013 - Annals of Pure and Applied Logic 164 (3):382-393.
    The fact that “natural” theories, i.e. theories which have something like an “idea” to them, are almost always linearly ordered with regard to logical strength has been called one of the great mysteries of the foundation of mathematics. However, one easily establishes the existence of theories with incomparable logical strengths using self-reference . As a result, PA+Con is not the least theory whose strength is greater than that of PA. But still we can ask: is there a sense in which (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Some results on cut-elimination, provable well-orderings, induction and reflection.Toshiyasu Arai - 1998 - Annals of Pure and Applied Logic 95 (1-3):93-184.
    We gather the following miscellaneous results in proof theory from the attic.1. 1. A provably well-founded elementary ordering admits an elementary order preserving map.2. 2. A simple proof of an elementary bound for cut elimination in propositional calculus and its applications to separation problem in relativized bounded arithmetic below S21.3. 3. Equivalents for Bar Induction, e.g., reflection schema for ω logic.4. 4. Direct computations in an equational calculus PRE and a decidability problem for provable inequations in PRE.5. 5. Intuitionistic fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • An application of graphical enumeration to PA.Andreas Weiermann - 2003 - Journal of Symbolic Logic 68 (1):5-16.
    For α less than ε0 let $N\alpha$ be the number of occurrences of ω in the Cantor normal form of α. Further let $\mid n \mid$ denote the binary length of a natural number n, let $\mid n\mid_h$ denote the h-times iterated binary length of n and let inv(n) be the least h such that $\mid n\mid_h \leq 2$ . We show that for any natural number h first order Peano arithmetic, PA, does not prove the following sentence: For all (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reverse mathematics and well-ordering principles: A pilot study.Bahareh Afshari & Michael Rathjen - 2009 - Annals of Pure and Applied Logic 160 (3):231-237.
    The larger project broached here is to look at the generally sentence “if X is well-ordered then f is well-ordered”, where f is a standard proof-theoretic function from ordinals to ordinals. It has turned out that a statement of this form is often equivalent to the existence of countable coded ω-models for a particular theory Tf whose consistency can be proved by means of a cut elimination theorem in infinitary logic which crucially involves the function f. To illustrate this theme, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Update Procedures and the 1-Consistency of Arithmetic.Jeremy Avigad - 2002 - Mathematical Logic Quarterly 48 (1):3-13.
    The 1-consistency of arithmetic is shown to be equivalent to the existence of fixed points of a certain type of update procedure, which is implicit in the epsilon-substitution method.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)How is it that infinitary methods can be applied to finitary mathematics? Gödel's T: a case study.Andreas Weiermann - 1998 - Journal of Symbolic Logic 63 (4):1348-1370.
    Inspired by Pohlers' local predicativity approach to Pure Proof Theory and Howard's ordinal analysis of bar recursion of type zero we present a short, technically smooth and constructive strong normalization proof for Gödel's system T of primitive recursive functionals of finite types by constructing an ε 0 -recursive function [] 0 : T → ω so that a reduces to b implies [a] $_0 > [b]_0$ . The construction of [] 0 is based on a careful analysis of the Howard-Schütte (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • How to characterize provably total functions by local predicativity.Andreas Weiermann - 1996 - Journal of Symbolic Logic 61 (1):52-69.
    Inspired by Pohlers' proof-theoretic analysis of KPω we give a straightforward non-metamathematical proof of the (well-known) classification of the provably total functions of $PA, PA + TI(\prec\lceil)$ (where it is assumed that the well-ordering $\prec$ has some reasonable closure properties) and KPω. Our method relies on a new approach to subrecursion due to Buchholz, Cichon and the author.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A note on fragments of uniform reflection in second order arithmetic.Emanuele Frittaion - 2022 - Bulletin of Symbolic Logic 28 (3):451-465.
    We consider fragments of uniform reflection for formulas in the analytic hierarchy over theories of second order arithmetic. The main result is that for any second order arithmetic theory $T_0$ extending $\mathsf {RCA}_0$ and axiomatizable by a $\Pi ^1_{k+2}$ sentence, and for any $n\geq k+1$, $$\begin{align*}T_0+ \mathrm{RFN}_{\varPi^1_{n+2}} \ = \ T_0 + \mathrm{TI}_{\varPi^1_n}, \end{align*}$$ $$\begin{align*}T_0+ \mathrm{RFN}_{\varSigma^1_{n+1}} \ = \ T_0+ \mathrm{TI}_{\varPi^1_n}^{-}, \end{align*}$$ where T is $T_0$ augmented with full induction, and $\mathrm {TI}_{\varPi ^1_n}^{-}$ denotes the schema of transfinite induction up (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Phase transitions for Gödel incompleteness.Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 157 (2-3):281-296.
    Gödel’s first incompleteness result from 1931 states that there are true assertions about the natural numbers which do not follow from the Peano axioms. Since 1931 many researchers have been looking for natural examples of such assertions and breakthroughs were obtained in the seventies by Jeff Paris [Some independence results for Peano arithmetic. J. Symbolic Logic 43 725–731] , Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977] and Laurie Kirby [L. Kirby, Jeff Paris, Accessible independence results for Peano Arithmetic, Bull. of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Variations on a theme by Weiermann.Toshiyasu Arai - 1998 - Journal of Symbolic Logic 63 (3):897-925.
    Weiermann [18] introduces a new method to generate fast growing functions in order to get an elegant and perspicuous proof of a bounding theorem for provably total recursive functions in a formal theory, e.g., in PA. His fast growing function θαn is described as follows. For each ordinal α and natural number n let T α n denote a finitely branching, primitive recursive tree of ordinals, i.e., an ordinal as a label is attached to each node in the tree so (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Goodstein sequences for prominent ordinals up to the ordinal of Π11 -CAo.Andreas Weiermann & Gunnar Wilken - 2013 - Annals of Pure and Applied Logic 164 (12):1493-1506.
    We introduce strong Goodstein principles which are true but unprovable in strong impredicative theories like IDn.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Classifying the provably total functions of pa.Andreas Weiermann - 2006 - Bulletin of Symbolic Logic 12 (2):177-190.
    We give a self-contained and streamlined version of the classification of the provably computable functions of PA. The emphasis is put on illuminating as well as seems possible the intrinsic computational character of the standard cut elimination process. The article is intended to be suitable for teaching purposes and just requires basic familiarity with PA and the ordinals below ε0. (Familiarity with a cut elimination theorem for a Gentzen or Tait calculus is helpful but not presupposed).
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Goodstein sequences for prominent ordinals up to the Bachmann–Howard ordinal.Michiel De Smet & Andreas Weiermann - 2012 - Annals of Pure and Applied Logic 163 (6):669-680.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Goodstein sequences for prominent ordinals up to the Bachmann–Howard ordinal.Michiel Smet & Andreas Weiermann - 2012 - Annals of Pure and Applied Logic 163 (6):669-680.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Slow versus fast growing.Andreas Weiermann - 2002 - Synthese 133 (1-2):13 - 29.
    We survey a selection of results about majorization hierarchies. The main focus is on classical and recent results about the comparison between the slow and fast growing hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ordinal analysis without proofs.Jeremy Avigad - manuscript
    An approach to ordinal analysis is presented which is finitary, but highlights the semantic content of the theories under consideration, rather than the syntactic structure of their proofs. In this paper the methods are applied to the analysis of theories extending Peano arithmetic with transfinite induction and transfinite arithmetic hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Peano arithmetic, games and descent recursion.Emanuele Frittaion - 2025 - Annals of Pure and Applied Logic 176 (4):103550.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Commitment Without Computational Strength.Anton Freund - 2022 - Review of Symbolic Logic 15 (4):880-906.
    We present a new manifestation of Gödel’s second incompleteness theorem and discuss its foundational significance, in particular with respect to Hilbert’s program. Specifically, we consider a proper extension of Peano arithmetic ( $\mathbf {PA}$ ) by a mathematically meaningful axiom scheme that consists of $\Sigma ^0_2$ -sentences. These sentences assert that each computably enumerable ( $\Sigma ^0_1$ -definable without parameters) property of finite binary trees has a finite basis. Since this fact entails the existence of polynomial time algorithms, it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fundamental sequences and fast-growing hierarchies for the Bachmann-Howard ordinal.David Fernández-Duque & Andreas Weiermann - 2024 - Annals of Pure and Applied Logic 175 (8):103455.
    Download  
     
    Export citation  
     
    Bookmark  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations