Switch to: References

Add citations

You must login to add citations.
  1. Lattice nonembeddings and intervals of the recursively enumerable degrees.Peter Cholak & Rod Downey - 1993 - Annals of Pure and Applied Logic 61 (3):195-221.
    Let b and c be r.e. Turing degrees such that b>c. We show that there is an r.e. degree a such that b>a>c and all lattices containing a critical triple, including the lattice M5, cannot be embedded into the interval [c, a].
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Incomparable prime ideals of recursively enumerable degrees.William C. Calhoun - 1993 - Annals of Pure and Applied Logic 63 (1):39-56.
    Calhoun, W.C., Incomparable prime ideals of recursively enumerable degrees, Annals of Pure and Applied Logic 63 39–56. We show that there is a countably infinite antichain of prime ideals of recursively enumerable degrees. This solves a generalized form of Post's problem.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The density of the nonbranching degrees.Peter A. Fejer - 1983 - Annals of Pure and Applied Logic 24 (2):113-130.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The bounded injury priority method and the learnability of unions of rectangles.Zhixiang Chen & Steven Homer - 1996 - Annals of Pure and Applied Logic 77 (2):143-168.
    We develop a bounded version of the finite injury priority method in recursion theory. We use this to study the learnability of unions of rectangles over the domain {0, …, n − 1}d with only equivalence queries. Applying this method, we show three main results:1. The class of unions of rectangles is polynomial time learnable for constant dimension d.2. The class of unions of rectangles whose projections at some unknown dimension are pairwise-disjoint is polynomial time learnable.3. The class of unions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Orbits of computably enumerable sets: low sets can avoid an upper cone.Russell Miller - 2002 - Annals of Pure and Applied Logic 118 (1-2):61-85.
    We investigate the orbit of a low computably enumerable set under automorphisms of the partial order of c.e. sets under inclusion. Given an arbitrary low c.e. set A and an arbitrary noncomputable c.e. set C, we use the New Extension Theorem of Soare to construct an automorphism of mapping A to a set B such that CTB. Thus, the orbit in of the low set A cannot be contained in the upper cone above C. This complements a result of Harrington, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On n -tardy sets.Peter A. Cholak, Peter M. Gerdes & Karen Lange - 2012 - Annals of Pure and Applied Logic 163 (9):1252-1270.
    Download  
     
    Export citation  
     
    Bookmark  
  • Parameter definability in the recursively enumerable degrees.André Nies - 2003 - Journal of Mathematical Logic 3 (01):37-65.
    The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the [Formula: see text] relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k ≥ 7, the [Formula: see text] relations bounded from below by a nonzero degree are uniformly definable. As applications, we show that Low 1 is parameter definable, and we provide methods that lead to a new example of a ∅-definable ideal. Moreover, we prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Post’s Problem for ordinal register machines: An explicit approach.Joel David Hamkins & Russell G. Miller - 2009 - Annals of Pure and Applied Logic 160 (3):302-309.
    We provide a positive solution for Post’s Problem for ordinal register machines, and also prove that these machines and ordinal Turing machines compute precisely the same partial functions on ordinals. To do so, we construct ordinal register machine programs which compute the necessary functions. In addition, we show that any set of ordinals solving Post’s Problem must be unbounded in the writable ordinals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extending and interpreting Post’s programme.S. Barry Cooper - 2010 - Annals of Pure and Applied Logic 161 (6):775-788.
    Computability theory concerns information with a causal–typically algorithmic–structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic infrastructure. Having characterised the close connection between the quantifier type of a real and the Turing jump operation, he looked for more subtle ways in which information entails a particular causal context. Specifically, he wanted to find simple relations on reals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Turing's O-machines, Searle, Penrose and the brain.B. J. Copeland - 1998 - Analysis 58 (2):128-138.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The α-finite injury method.G. E. Sacks & S. G. Simpson - 1972 - Annals of Mathematical Logic 4 (4):343-367.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Coding a family of sets.J. F. Knight - 1998 - Annals of Pure and Applied Logic 94 (1-3):127-142.
    In this paper, we state a metatheorem for constructions involving coding. Using the metatheorem, we obtain results on coding a family of sets into a family of relations, or into a single relation. For a concrete example, we show that the set of limit points in a recursive ordering of type ω 2 can have arbitrary 2-REA degree.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Lachlan’s major sub-degree problem.S. Barry Cooper & Angsheng Li - 2008 - Archive for Mathematical Logic 47 (4):341-434.
    The Major Sub-degree Problem of A. H. Lachlan (first posed in 1967) has become a long-standing open question concerning the structure of the computably enumerable (c.e.) degrees. Its solution has important implications for Turing definability and for the ongoing programme of fully characterising the theory of the c.e. Turing degrees. A c.e. degree a is a major subdegree of a c.e. degree b > a if for any c.e. degree x, ${{\bf 0' = b \lor x}}$ if and only if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conjectures and questions from Gerald Sacks's Degrees of Unsolvability.Richard A. Shore - 1997 - Archive for Mathematical Logic 36 (4-5):233-253.
    We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results for any (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intervals containing exactly one c.e. degree.Guohua Wu - 2007 - Annals of Pure and Applied Logic 146 (1):91-102.
    Cooper proved in [S.B. Cooper, Strong minimal covers for recursively enumerable degrees, Math. Logic Quart. 42 191–196] the existence of a c.e. degree with a strong minimal cover . So is the greastest c.e. degree below . Cooper and Yi pointed out in [S.B. Cooper, X. Yi, Isolated d.r.e. degrees, University of Leeds, Dept. of Pure Math., 1995. Preprint] that this strongly minimal cover cannot be d.c.e., and meanwhile, they proposed the notion of isolated degrees: a d.c.e. degree is isolated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Turing degrees of minimal index sets.Jason Teutsch - 2007 - Annals of Pure and Applied Logic 148 (1):63-80.
    We study generalizations of shortest programs as they pertain to Schaefer’s problem. We identify sets of -minimal and -minimal indices and characterize their truth-table and Turing degrees. In particular, we show , , and that there exists a Kolmogorov numbering ψ satisfying both and . This Kolmogorov numbering also achieves maximal truth-table degree for other sets of minimal indices. Finally, we show that the set of shortest descriptions, , is 2-c.e. but not co-2-c.e. Some open problems are left for the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degree structures: Local and global investigations.Richard A. Shore - 2006 - Bulletin of Symbolic Logic 12 (3):369-389.
    The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.Institutionally, it was an honor to serve as President of the Association and I want to thank my teachers and predecessors for guidance and advice and my fellow officers and our publisher for their work and support. To all of the members who answered my calls to chair or serve on this or that committee, I offer my thanks as well. Your (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets.Robert I. Soare - 1982 - Annals of Mathematical Logic 22 (1):69.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The recursively enumerable alpha-degrees are dense.Richard A. Shore - 1976 - Annals of Mathematical Logic 9 (1/2):123.
    Download  
     
    Export citation  
     
    Bookmark   15 citations