Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strict Finitism, Feasibility, and the Sorites.Walter Dean - 2018 - Review of Symbolic Logic 11 (2):295-346.
    This article bears on four topics: observational predicates and phenomenal properties, vagueness, strict finitism as a philosophy of mathematics, and the analysis of feasible computability. It is argued that reactions to strict finitism point towards a semantics for vague predicates in the form of nonstandard models of weak arithmetical theories of the sort originally introduced to characterize the notion of feasibility as understood in computational complexity theory. The approach described eschews the use of nonclassical logic and related devices like degrees (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dialectical Contradictions and Classical Formal Logic.Inoue Kazumi - 2014 - International Studies in the Philosophy of Science 28 (2):113-132.
    A dialectical contradiction can be appropriately described within the framework of classical formal logic. It is in harmony with the law of noncontradiction. According to our definition, two theories make up a dialectical contradiction if each of them is consistent and their union is inconsistent. It can happen that each of these two theories has an intended model. Plenty of examples are to be found in the history of science.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Metasemantic Challenge for Mathematical Determinacy.Jared Warren & Daniel Waxman - 2020 - Synthese 197 (2):477-495.
    This paper investigates the determinacy of mathematics. We begin by clarifying how we are understanding the notion of determinacy before turning to the questions of whether and how famous independence results bear on issues of determinacy in mathematics. From there, we pose a metasemantic challenge for those who believe that mathematical language is determinate, motivate two important constraints on attempts to meet our challenge, and then use these constraints to develop an argument against determinacy and discuss a particularly popular approach (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • More on Putnam’s models: a reply to Belloti.Timothy Bays - 2007 - Erkenntnis 67 (1):119-135.
    In an earlier paper, I claimed that one version of Putnam's model-theoretic argument against realism turned on a subtle, but philosophically significant, mathematical mistake. Recently, Luca Bellotti has criticized my argument for this claim. This paper responds to Bellotti's criticisms.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Innocence of Truth.Cezary Cieśliński - 2015 - Dialectica 69 (1):61-85.
    One of the popular explications of the deflationary tenet of ‘thinness’ of truth is the conservativeness demand: the declaration that a deflationary truth theory should be conservative over its base. This paper contains a critical discussion and assessment of this demand. We ask and answer the question of whether conservativity forms a part of deflationary doctrines.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Models and Computability.W. Dean - 2014 - Philosophia Mathematica 22 (2):143-166.
    Computationalism holds that our grasp of notions like ‘computable function’ can be used to account for our putative ability to refer to the standard model of arithmetic. Tennenbaum's Theorem has been repeatedly invoked in service of this claim. I will argue that not only do the relevant class of arguments fail, but that the result itself is most naturally understood as having the opposite of a reference-fixing effect — i.e., rather than securing the determinacy of number-theoretic reference, Tennenbaum's Theorem points (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Troubles with (the concept of) truth in mathematics.Roman Murawski - 2006 - Logic and Logical Philosophy 15 (4):285-303.
    In the paper the problem of definability and undefinability of the concept of satisfaction and truth is considered. Connections between satisfaction and truth on the one hand and consistency of certain systems of omega-logic and transfinite induction on the other are indicated.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Truth and Consistency.Jan Woleński - 2010 - Axiomathes 20 (2-3):347-355.
    This paper investigates relations between truth and consistency. The basic intuition is that truth implies consistency, but the reverse dependence fails. However, this simple account leads to some troubles, due to some metalogical results, in particular the Gödel-Malcev completeness theorem. Thus, a more advanced analysis is required. This is done by employing the concept of ω-consistency and ω-inconsistency. Both concepts motivate that the concept of the standard truth should be introduced as well. The results are illustrated by an interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Cognitive Relation in a Formal Setting.Jan Woleński - 2007 - Studia Logica 86 (3):479-497.
    This paper proposes a formal framework for the cognitive relation understood as an ordered pair with the cognitive subject and object of cognition as its members. The cognitive subject is represented as consisting of a language, conequence relation and a stock of accepted theories, and the object as a model of those theories. This language allows a simple formulation of the realism/anti-realism controversy. In particular, Tarski’s undefinability theorem gives a philosophical argument for realism in epistemology.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Logic and Nothing Else.Jaroslav Peregrin - manuscript
    Clauses (1) and (2) guarantee the inclusion of all 'intuitive' natural numbers, and (3) guarantees the exclusion of all other objects. Thus, in particular, no nonstandard numbers, which would follow after the intuitive ones are admitted (nonstandard numbers are found in nonstandard models of Peano arithmetic, in which the standard natural numbers are followed by one or more 'copies' of integers running from minus infinity to infinity)1. What is problematic about this delimitation? I suspect that its hypothetical proponent would see (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Domestication of Mathematical Pathologies.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):709-720.
    Certain mathematical objects bear the name “pathological”. They either occur as unexpected and unwilling in mathematical research practice, or are constructed deliberately, for instance in order to delimit the scope of application of a theorem. I discuss examples of mathematical pathologies and the circumstances of their emergence. I focus my attention on the creative role of pathologies in the development of mathematics. Finally, I propose a few reflections concerning the degree of cognitive accessibility of mathematical objects. I believe that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Representational Foundations of Computation.Michael Rescorla - 2015 - Philosophia Mathematica 23 (3):338-366.
    Turing computation over a non-linguistic domain presupposes a notation for the domain. Accordingly, computability theory studies notations for various non-linguistic domains. It illuminates how different ways of representing a domain support different finite mechanical procedures over that domain. Formal definitions and theorems yield a principled classification of notations based upon their computational properties. To understand computability theory, we must recognize that representation is a key target of mathematical inquiry. We must also recognize that computability theory is an intensional enterprise: it (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations