Switch to: References

Add citations

You must login to add citations.
  1. Unification in intermediate logics.Rosalie Iemhoff & Paul Rozière - 2015 - Journal of Symbolic Logic 80 (3):713-729.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proof theory for admissible rules.Rosalie Iemhoff & George Metcalfe - 2009 - Annals of Pure and Applied Logic 159 (1-2):171-186.
    Admissible rules of a logic are those rules under which the set of theorems of the logic is closed. In this paper, a Gentzen-style framework is introduced for analytic proof systems that derive admissible rules of non-classical logics. While Gentzen systems for derivability treat sequents as basic objects, for admissibility, the basic objects are sequent rules. Proof systems are defined here for admissible rules of classes of modal logics, including K4, S4, and GL, and also Intuitionistic Logic IPC. With minor (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Complexity of admissible rules.Emil Jeřábek - 2007 - Archive for Mathematical Logic 46 (2):73-92.
    We investigate the computational complexity of deciding whether a given inference rule is admissible for some modal and superintuitionistic logics. We state a broad condition under which the admissibility problem is coNEXP-hard. We also show that admissibility in several well-known systems (including GL, S4, and IPC) is in coNE, thus obtaining a sharp complexity estimate for admissibility in these systems.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Decidability of Admissibility: On a Problem by Friedman and its Solution by Rybakov.Jeroen P. Goudsmit - 2021 - Bulletin of Symbolic Logic 27 (1):1-38.
    Rybakov (1984a) proved that the admissible rules of IPC are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidability of admissibility: On a problem by Friedman and its solution by Rybakov.Jeroen P. Goudsmit - 2021 - Bulletin of Symbolic Logic 27 (1):1-38.
    Rybakov proved that the admissible rules of $\mathsf {IPC}$ are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Syntactic Approach to Unification in Transitive Reflexive Modal Logics.Rosalie Iemhoff - 2016 - Notre Dame Journal of Formal Logic 57 (2):233-247.
    This paper contains a proof-theoretic account of unification in transitive reflexive modal logics, which means that the reasoning is syntactic and uses as little semantics as possible. New proofs of theorems on unification types are presented and these results are extended to negationless fragments. In particular, a syntactic proof of Ghilardi’s result that $\mathsf {S4}$ has finitary unification is provided. In this approach the relation between classical valuations, projective unifiers, and admissible rules is clarified.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Unification, finite duality and projectivity in varieties of Heyting algebras.Silvio Ghilardi - 2004 - Annals of Pure and Applied Logic 127 (1-3):99-115.
    We investigate finitarity of unification types in locally finite varieties of Heyting algebras, giving both positive and negative results. We make essential use of finite dualities within a conceptualization for E-unification theory 733–752) relying on the algebraic notion of a projective object.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On unification and admissible rules in Gabbay–de Jongh logics.Jeroen P. Goudsmit & Rosalie Iemhoff - 2014 - Annals of Pure and Applied Logic 165 (2):652-672.
    In this paper we study the admissible rules of intermediate logics. We establish some general results on extensions of models and sets of formulas. These general results are then employed to provide a basis for the admissible rules of the Gabbay–de Jongh logics and to show that these logics have finitary unification type.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Intermediate Logics and Visser's Rules.Rosalie Iemhoff - 2005 - Notre Dame Journal of Formal Logic 46 (1):65-81.
    Visser's rules form a basis for the admissible rules of . Here we show that this result can be generalized to arbitrary intermediate logics: Visser's rules form a basis for the admissible rules of any intermediate logic for which they are admissible. This implies that if Visser's rules are derivable for then has no nonderivable admissible rules. We also provide a necessary and sufficient condition for the admissibility of Visser's rules. We apply these results to some specific intermediate logics and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • On the rules of intermediate logics.Rosalie Iemhoff - 2006 - Archive for Mathematical Logic 45 (5):581-599.
    If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Unification in linear temporal logic LTL.Sergey Babenyshev & Vladimir Rybakov - 2011 - Annals of Pure and Applied Logic 162 (12):991-1000.
    We prove that a propositional Linear Temporal Logic with Until and Next has unitary unification. Moreover, for every unifiable in LTL formula A there is a most general projective unifier, corresponding to some projective formula B, such that A is derivable from B in LTL. On the other hand, it can be shown that not every open and unifiable in LTL formula is projective. We also present an algorithm for constructing a most general unifier.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On Rules.Rosalie Iemhoff - 2015 - Journal of Philosophical Logic 44 (6):697-711.
    This paper contains a brief overview of the area of admissible rules with an emphasis on results about intermediate and modal propositional logics. No proofs are given but many references to the literature are provided.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Undecidability of admissibility in the product of two Alt logics.Philippe Balbiani & Çiğdem Gencer - forthcoming - Logic Journal of the IGPL.
    The product of two $\textbf {Alt}$ logics possesses the polynomial product finite model property and its membership problem is $\textbf {coNP}$-complete. Using a reduction from an undecidable domino-tiling problem, we prove that its admissibility problem is undecidable.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification types and union splittings in intermediate logics.Wojciech Dzik, Sławomir Kost & Piotr Wojtylak - 2025 - Annals of Pure and Applied Logic 176 (1):103508.
    Download  
     
    Export citation  
     
    Bookmark