Switch to: References

Add citations

You must login to add citations.
  1. Some remarks on indestructibility and Hamkins? lottery preparation.Arthur W. Apter - 2003 - Archive for Mathematical Logic 42 (8):717-735.
    .In this paper, we first prove several general theorems about strongness, supercompactness, and indestructibility, along the way giving some new applications of Hamkins’ lottery preparation forcing to indestructibility. We then show that it is consistent, relative to the existence of cardinals κ<λ so that κ is λ supercompact and λ is inaccessible, for the least strongly compact cardinal κ to be the least strong cardinal and to have its strongness, but not its strong compactness, indestructible under κ-strategically closed forcing.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The strength of choiceless patterns of singular and weakly compact cardinals.Daniel Busche & Ralf Schindler - 2009 - Annals of Pure and Applied Logic 159 (1-2):198-248.
    We extend the core model induction technique to a choiceless context, and we exploit it to show that each one of the following two hypotheses individually implies that , the Axiom of Determinacy, holds in the of a generic extension of : every uncountable cardinal is singular, and every infinite successor cardinal is weakly compact and every uncountable limit cardinal is singular.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Long Borel hierarchies.Arnold W. Miller - 2008 - Mathematical Logic Quarterly 54 (3):307-322.
    We show that there is a model of ZF in which the Borel hierarchy on the reals has length ω2. This implies that ω1 has countable cofinality, so the axiom of choice fails very badly in our model. A similar argument produces models of ZF in which the Borel hierarchy has exactly λ + 1 levels for any given limit ordinal λ less than ω2. We also show that assuming a large cardinal hypothesis there are models of ZF in which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A new characterization of supercompactness and applications.Qi Feng - 2009 - Annals of Pure and Applied Logic 160 (2):192-213.
    We give a new characterization of λ-supercompact cardinal κ in terms of -Solovay pairs. We give some applications of -Solovay pairs.
    Download  
     
    Export citation  
     
    Bookmark  
  • Making all cardinals almost Ramsey.Arthur W. Apter & Peter Koepke - 2008 - Archive for Mathematical Logic 47 (7-8):769-783.
    We examine combinatorial aspects and consistency strength properties of almost Ramsey cardinals. Without the Axiom of Choice, successor cardinals may be almost Ramsey. From fairly mild supercompactness assumptions, we construct a model of ZF + ${\neg {\rm AC}_\omega}$ in which every infinite cardinal is almost Ramsey. Core model arguments show that strong assumptions are necessary. Without successors of singular cardinals, we can weaken this to an equiconsistency of the following theories: “ZFC + There is a proper class of regular almost (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Weak Choice Principle WISC may Fail in the Category of Sets.David Michael Roberts - 2015 - Studia Logica 103 (5):1005-1017.
    The set-theoretic axiom WISC states that for every set there is a set of surjections to it cofinal in all such surjections. By constructing an unbounded topos over the category of sets and using an extension of the internal logic of a topos due to Shulman, we show that WISC is independent of the rest of the axioms of the set theory given by a well-pointed topos. This also gives an example of a topos that is not a predicative topos (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The first measurable cardinal can be the first uncountable regular cardinal at any successor height.Arthur W. Apter, Ioanna M. Dimitriou & Peter Koepke - 2014 - Mathematical Logic Quarterly 60 (6):471-486.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Consecutive Singular Cardinals and the Continuum Function.Arthur W. Apter & Brent Cody - 2013 - Notre Dame Journal of Formal Logic 54 (2):125-136.
    We show that from a supercompact cardinal $\kappa$, there is a forcing extension $V[G]$ that has a symmetric inner model $N$ in which $\mathrm {ZF}+\lnot\mathrm {AC}$ holds, $\kappa$ and $\kappa^{+}$ are both singular, and the continuum function at $\kappa$ can be precisely controlled, in the sense that the final model contains a sequence of distinct subsets of $\kappa$ of length equal to any predetermined ordinal. We also show that the above situation can be collapsed to obtain a model of $\mathrm (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Second Glance at Non-restrictiveness.B. Lowe - 2003 - Philosophia Mathematica 11 (3):323-331.
    We give an example of a theory that strongly maximizes over ZFC and discuss possible consequences of this finding.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Some Aspects and Examples of Infinity Notions.J. W. Degen - 1994 - Mathematical Logic Quarterly 40 (1):111-124.
    I wish to thank Klaus Kühnle who streamlined in [8] several of my definitions and proofs concerning the subject matter of this paper. Some ideas and results arose from discussions with Klaus Leeb. Jan Johannsen discovered some mistakes in an earlier version.
    Download  
     
    Export citation  
     
    Bookmark   7 citations