Citations of:
Add citations
You must login to add citations.


The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...) 



The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...) 

In the first chapter, we discuss Dummetts idea that the notion of truth arises from the one of the correctness of an assertion. We argue that, in a firstorder language, the need of defining truth in terms of the notion of satisfaction, which is yielded by the presence of quantifiers, is structurally analogous to the need of a notion of truth as distinct from the one of correctness of an assertion. In the light of the analogy between predicates in Frege (...) 



This is an extended version of the lectures given during the 12thConference on Applications of Logic in Philosophy and in the Foundationsof Mathematics in Szklarska Poręba. It contains a surveyof modal hybrid logic, one of the branches of contemporary modal logic. Inthe ﬁrst part a variety of hybrid languages and logics is presented with adiscussion of expressivity matters. The second part is devoted to thoroughexposition of proof methods for hybrid logics. The main point is to showthat application of hybrid logics (...) 

Refutation systems are formal systems for inferring the falsity of formulae. These systems can, in particular, be used to syntactically characterise logics. In this paper, we explore the close connection between refutation systems and admissible rules. We develop technical machinery to construct refutation systems, employing techniques from the study of admissible rules. Concretely, we provide a refutation system for the intermediate logics of bounded branching, known as the Gabbay–de Jongh logics. We show that this gives a characterisation of these logics (...) 

A general theory of refutation systems is given. Some applications (concerning maximality and minimality in lattices of logics) are also discussed. 



This paper presents two systems of natural deduction for the rejection of nontautologies of classical propositional logic. The first system is sound and complete with respect to the body of all nontautologies, the second system is sound and complete with respect to the body of all contradictions. The second system is a subsystem of the first. Starting with Jan Łukasiewicz's work, we describe the historical development of theories of rejection for classical propositional logic. Subsequently, we present the two systems of (...) 

Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable nonclassical logics in traditional completeness proofs based on Henkin’s method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame class (...) 