Switch to: References

Citations of:

Refutation systems in modal logic

Studia Logica 53 (2):299 - 324 (1994)

Add citations

You must login to add citations.
  1. The Pioneering Proving Methods as Applied in the Warsaw School of Logic – Their Historical and Contemporary Significance.Urszula Wybraniec-Skardowska - 2024 - History and Philosophy of Logic 45 (2):124-141.
    Justification of theorems plays a vital role in any rational human activity. It is indispensable in science. The deductive method of justifying theorems is used in all sciences and it is the only method of justifying theorems in deductive disciplines. It is based on the notion of proof, thus it is a method of proving theorems. In the Warsaw School of Logic (WSL) – the famous branch of the Lvov-Warsaw School (LWS) – two types of the method: axiomatic deduction method (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Complementary Proof Nets for Classical Logic.Gabriele Pulcini & Achille C. Varzi - 2023 - Logica Universalis 17 (4):411-432.
    A complementary system for a given logic is a proof system whose theorems are exactly the formulas that are not valid according to the logic in question. This article is a contribution to the complementary proof theory of classical propositional logic. In particular, we present a complementary proof-net system, $$\textsf{CPN}$$ CPN, that is sound and complete with respect to the set of all classically invalid (one-side) sequents. We also show that cut elimination in $$\textsf{CPN}$$ CPN enjoys strong normalization along with (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • B-frame duality.Guillaume Massas - 2023 - Annals of Pure and Applied Logic 174 (5):103245.
    This paper introduces the category of b-frames as a new tool in the study of complete lattices. B-frames can be seen as a generalization of posets, which play an important role in the representation theory of Heyting algebras, but also in the study of complete Boolean algebras in forcing. This paper combines ideas from the two traditions in order to generalize some techniques and results to the wider context of complete lattices. In particular, we lift a representation theorem of Allwein (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sequent-Calculi for Metainferential Logics.Bruno Da Ré & Federico Pailos - 2021 - Studia Logica 110 (2):319-353.
    In recent years, some theorists have argued that the clogics are not only defined by their inferences, but also by their metainferences. In this sense, logics that coincide in their inferences, but not in their metainferences were considered to be different. In this vein, some metainferential logics have been developed, as logics with metainferences of any level, built as hierarchies over known logics, such as \, and \. What is distinctive of these metainferential logics is that they are mixed, i.e. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Validities, antivalidities and contingencies: A multi-standard approach.Eduardo Barrio & Federico Pailos - 2021 - Journal of Philosophical Logic 51 (1):75-98.
    It is widely accepted that classical logic is trivialized in the presence of a transparent truth-predicate. In this paper, we will explain why this point of view must be given up. The hierarchy of metainferential logics defined in Barrio et al. and Pailos recovers classical logic, either in the sense that every classical inferential validity is valid at some point in the hierarchy ), or because a logic of a transfinite level defined in terms of the hierarchy shares its validities (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Rejection in Łukasiewicz's and Słupecki's Sense.Wybraniec-Skardowska Urszula - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Cham, Switzerland: Springer- Birkhauser,. pp. 575-597.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz and developed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Rejection in Łukasiewicz's and Słupecki' Sense.Urszula Wybraniec-Skardowska - 2018 - Lvov-Warsaw School. Past and Present.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Rejection in Łukasiewicz's and Słupecki's Sense.Urszula Wybraniec-Skardowska - 2018 - In Urszula Wybraniec-Skardowska & Ángel Garrido (eds.), The Lvov-Warsaw School. Past and Present. Cham, Switzerland: Springer- Birkhauser,. pp. 575-597.
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logics of rejection: two systems of natural deduction.Allard Tamminga - 1994 - Logique Et Analyse 146:169-208.
    This paper presents two systems of natural deduction for the rejection of non-tautologies of classical propositional logic. The first system is sound and complete with respect to the body of all non-tautologies, the second system is sound and complete with respect to the body of all contradictions. The second system is a subsystem of the first. Starting with Jan Łukasiewicz's work, we describe the historical development of theories of rejection for classical propositional logic. Subsequently, we present the two systems of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Proof and truth: an anti-realist perspective.Luca Tranchini - 2013 - Pisa: Edizioni ETS. Edited by Luca Tranchini.
    In the first chapter, we discuss Dummett’s idea that the notion of truth arises from the one of the correctness of an assertion. We argue that, in a first-order language, the need of defining truth in terms of the notion of satisfaction, which is yielded by the presence of quantifiers, is structurally analogous to the need of a notion of truth as distinct from the one of correctness of an assertion. In the light of the analogy between predicates in Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Natural Deduction, Hybrid Systems and Modal Logics.Andrzej Indrzejczak - 2010 - Dordrecht, Netherland: Springer.
    This book provides a detailed exposition of one of the most practical and popular methods of proving theorems in logic, called Natural Deduction. It is presented both historically and systematically. Also some combinations with other known proof methods are explored. The initial part of the book deals with Classical Logic, whereas the rest is concerned with systems for several forms of Modal Logics, one of the most important branches of modern logic, which has wide applicability.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Proofs and Countermodels in Non-Classical Logics.Sara Negri - 2014 - Logica Universalis 8 (1):25-60.
    Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable non-classical logics in traditional completeness proofs based on Henkin’s method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame class (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Abduction as Deductive Saturation: a Proof-Theoretic Inquiry.Mario Piazza, Gabriele Pulcini & Andrea Sabatini - 2023 - Journal of Philosophical Logic 52 (6):1575-1602.
    Abductive reasoning involves finding the missing premise of an “unsaturated” deductive inference, thereby selecting a possible _explanans_ for a conclusion based on a set of previously accepted premises. In this paper, we explore abductive reasoning from a structural proof-theory perspective. We present a hybrid sequent calculus for classical propositional logic that uses sequents and antisequents to define a procedure for identifying the set of analytic hypotheses that a rational agent would be expected to select as _explanans_ when presented with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Falsification-Aware Calculi and Semantics for Normal Modal Logics Including S4 and S5.Norihiro Kamide - 2023 - Journal of Logic, Language and Information 32 (3):395-440.
    Falsification-aware (hyper)sequent calculi and Kripke semantics for normal modal logics including S4 and S5 are introduced and investigated in this study. These calculi and semantics are constructed based on the idea of a falsification-aware framework for Nelson’s constructive three-valued logic. The cut-elimination and completeness theorems for the proposed calculi and semantics are proved.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fractional semantics for classical logic.Mario Piazza & Gabriele Pulcini - 2020 - Review of Symbolic Logic 13 (4):810-828.
    This article presents a new semantics for classical propositional logic. We begin by maximally extending the space of sequent proofs so as to admit proofs for any logical formula; then, we extract the new semantics by focusing on the axiomatic structure of proofs. In particular, the interpretation of a formula is given by the ratio between the number of identity axioms out of the total number of axioms occurring in any of its proofs. The outcome is an informational refinement of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Paraconsistency in classical logic.Gabriele Pulcini & Achille C. Varzi - 2018 - Synthese 195 (12):5485-5496.
    Classical propositional logic can be characterized, indirectly, by means of a complementary formal system whose theorems are exactly those formulas that are not classical tautologies, i.e., contradictions and truth-functional contingencies. Since a formula is contingent if and only if its negation is also contingent, the system in question is paraconsistent. Hence classical propositional logic itself admits of a paraconsistent characterization, albeit “in the negative”. More generally, any decidable logic with a syntactically incomplete proof theory allows for a paraconsistent characterization of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Syntactic Refutations against Finite Models in Modal Logic.Tomasz Skura - 1994 - Notre Dame Journal of Formal Logic 35 (4):595-605.
    The purpose of the paper is to study syntactic refutation systems as a way of characterizing normal modal propositional logics. In particular it is shown that there is a decidable modal logic without the finite model property that has a simple finite refutation system.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A refutation theory.Tomasz Skura - 2009 - Logica Universalis 3 (2):293-302.
    A general theory of refutation systems is given. Some applications (concerning maximality and minimality in lattices of logics) are also discussed.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Refutation-Aware Gentzen-Style Calculi for Propositional Until-Free Linear-Time Temporal Logic.Norihiro Kamide - 2023 - Studia Logica 111 (6):979-1014.
    This study introduces refutation-aware Gentzen-style sequent calculi and Kripke-style semantics for propositional until-free linear-time temporal logic. The sequent calculi and semantics are constructed on the basis of the refutation-aware setting for Nelson’s paraconsistent logic. The cut-elimination and completeness theorems for the proposed sequent calculi and semantics are proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Admissibility and refutation: some characterisations of intermediate logics.Jeroen P. Goudsmit - 2014 - Archive for Mathematical Logic 53 (7-8):779-808.
    Refutation systems are formal systems for inferring the falsity of formulae. These systems can, in particular, be used to syntactically characterise logics. In this paper, we explore the close connection between refutation systems and admissible rules. We develop technical machinery to construct refutation systems, employing techniques from the study of admissible rules. Concretely, we provide a refutation system for the intermediate logics of bounded branching, known as the Gabbay–de Jongh logics. We show that this gives a characterisation of these logics (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Which Modal Logic Is the Right One?John P. Burgess - 1999 - Notre Dame Journal of Formal Logic 40 (1):81-93.
    The question, "Which modal logic is the right one for logical necessity?," divides into two questions, one about model-theoretic validity, the other about proof-theoretic demonstrability. The arguments of Halldén and others that the right validity argument is S5, and the right demonstrability logic includes S4, are reviewed, and certain common objections are argued to be fallacious. A new argument, based on work of Supecki and Bryll, is presented for the claim that the right demonstrability logic must be contained in S5, (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • A meta-logic of inference rules: Syntax.Alex Citkin - 2015 - Logic and Logical Philosophy 24 (3).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modal Hybrid Logic.Andrzej Indrzejczak - 2007 - Logic and Logical Philosophy 16 (2-3):147-257.
    This is an extended version of the lectures given during the 12-thConference on Applications of Logic in Philosophy and in the Foundationsof Mathematics in Szklarska Poręba. It contains a surveyof modal hybrid logic, one of the branches of contemporary modal logic. Inthe first part a variety of hybrid languages and logics is presented with adiscussion of expressivity matters. The second part is devoted to thoroughexposition of proof methods for hybrid logics. The main point is to showthat application of hybrid logics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Sequent-type rejection systems for finite-valued non-deterministic logics.Martin Gius & Hans Tompits - 2023 - Journal of Applied Non-Classical Logics 33 (3):606-640.
    A rejection system, also referred to as a complementary calculus, is a proof system axiomatising the invalid formulas of a logic, in contrast to traditional calculi which axiomatise the valid ones. Rejection systems therefore introduce a purely syntactic way of determining non-validity without having to consider countermodels, which can be useful in procedures for automated deduction and proof search. Rejection calculi have first been formally introduced by Łukasiewicz in the context of Aristotelian syllogistic and subsequently rejection systems for many well-known (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hybrid Deduction–Refutation Systems.Valentin Goranko - 2019 - Axioms 8 (4).
    Hybrid deduction–refutation systems are deductive systems intended to derive both valid and non-valid, i.e., semantically refutable, formulae of a given logical system, by employing together separate derivability operators for each of these and combining ‘hybrid derivation rules’ that involve both deduction and refutation. The goal of this paper is to develop a basic theory and ‘meta-proof’ theory of hybrid deduction–refutation systems. I then illustrate the concept on a hybrid derivation system of natural deduction for classical propositional logic, for which I (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Rules of Explosion and Excluded Middle: Constructing a Unified Single-Succedent Gentzen-Style Framework for Classical, Paradefinite, Paraconsistent, and Paracomplete Logics.Norihiro Kamide - 2024 - Journal of Logic, Language and Information 33 (2):143-178.
    A unified and modular falsification-aware single-succedent Gentzen-style framework is introduced for classical, paradefinite, paraconsistent, and paracomplete logics. This framework is composed of two special inference rules, referred to as the rules of explosion and excluded middle, which correspond to the principle of explosion and the law of excluded middle, respectively. Similar to the cut rule in Gentzen’s LK for classical logic, these rules are admissible in cut-free LK. A falsification-aware single-succedent Gentzen-style sequent calculus fsCL for classical logic is formalized based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Generalisation of a Refutation-related Method in Paraconsistent Logics.Adam Trybus - forthcoming - Logic and Logical Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A łukasiewicz-style refutation system for the modal logic S.Tomasz Skura - 1995 - Journal of Philosophical Logic 24 (6):573 - 582.
    Download  
     
    Export citation  
     
    Bookmark   11 citations