Switch to: References

Citations of:

Fragile measurability

Journal of Symbolic Logic 59 (1):262-282 (1994)

Add citations

You must login to add citations.
  1. Destruction or preservation as you like it.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
    The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Ultrahuge cardinals.Konstantinos Tsaprounis - 2016 - Mathematical Logic Quarterly 62 (1-2):77-87.
    In this note, we start with the notion of a superhuge cardinal and strengthen it by requiring that the elementary embeddings witnessing this property are, in addition, sufficiently superstrong above their target. This modification leads to a new large cardinal which we call ultrahuge. Subsequently, we study the placement of ultrahugeness in the usual large cardinal hierarchy, while at the same time show that some standard techniques apply nicely in the context of ultrahuge cardinals as well.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rank-into-rank hypotheses and the failure of GCH.Vincenzo Dimonte & Sy-David Friedman - 2014 - Archive for Mathematical Logic 53 (3-4):351-366.
    In this paper we are concerned about the ways GCH can fail in relation to rank-into-rank hypotheses, i.e., very large cardinals usually denoted by I3, I2, I1 and I0. The main results are a satisfactory analysis of the way the power function can vary on regular cardinals in the presence of rank-into-rank hypotheses and the consistency under I0 of the existence of j:Vλ+1≺Vλ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j : V_{\lambda+1} {\prec} V_{\lambda+1}}$$\end{document} with the failure of GCH (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Forcing the Least Measurable to Violate GCH.Arthur W. Apter - 1999 - Mathematical Logic Quarterly 45 (4):551-560.
    Starting with a model for “GCH + k is k+ supercompact”, we force and construct a model for “k is the least measurable cardinal + 2k = K+”. This model has the property that forcing over it with Add preserves the fact k is the least measurable cardinal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lifting elementary embeddings j: V λ → V λ. [REVIEW]Paul Corazza - 2007 - Archive for Mathematical Logic 46 (2):61-72.
    We describe a fairly general procedure for preserving I3 embeddings j: V λ → V λ via λ-stage reverse Easton iterated forcings. We use this method to prove that, assuming the consistency of an I3 embedding, V = HOD is consistent with the theory ZFC + WA where WA is an axiom schema in the language {∈, j} asserting a strong but not inconsistent form of “there is an elementary embedding V → V”. This improves upon an earlier result in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identity crises and strong compactness.Arthur Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ and another in which the least strongly compact cardinal is supercompact. If there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Indestructibility under adding Cohen subsets and level by level equivalence.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):271-279.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which the least supercompact cardinal κ has its strong compactness indestructible under adding arbitrarily many Cohen subsets. There are no restrictions on the large cardinal structure of our model.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
    We give a characterization of extendibility in terms of embeddings between the structures H λ . By that means, we show that the GCH can be forced (by a class forcing) while preserving extendible cardinals. As a corollary, we argue that such cardinals cannot in general be made indestructible by (set) forcing, under a wide variety of forcing notions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Canonical seeds and Prikry trees.Joel Hamkins - 1997 - Journal of Symbolic Logic 62 (2):373-396.
    Applying the seed concept to Prikry tree forcing P μ , I investigate how well P μ preserves the maximality property of ordinary Prikry forcing and prove that P μ Prikry sequences are maximal exactly when μ admits no non-canonical seeds via a finite iteration. In particular, I conclude that if μ is a strongly normal supercompactness measure, then P μ Prikry sequences are maximal, thereby proving, for a large class of measures, a conjecture of W. Hugh Woodin's.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • The wholeness axiom and Laver sequences.Paul Corazza - 2000 - Annals of Pure and Applied Logic 105 (1-3):157-260.
    In this paper we introduce the Wholeness Axiom , which asserts that there is a nontrivial elementary embedding from V to itself. We formalize the axiom in the language {∈, j } , adding to the usual axioms of ZFC all instances of Separation, but no instance of Replacement, for j -formulas, as well as axioms that ensure that j is a nontrivial elementary embedding from the universe to itself. We show that WA has consistency strength strictly between I 3 (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Forcing a □(κ)-like principle to hold at a weakly compact cardinal.Brent Cody, Victoria Gitman & Chris Lambie-Hanson - 2021 - Annals of Pure and Applied Logic 172 (7):102960.
    Download  
     
    Export citation  
     
    Bookmark   2 citations