Switch to: References

Add citations

You must login to add citations.
  1. Large cardinals need not be large in HOD.Yong Cheng, Sy-David Friedman & Joel David Hamkins - 2015 - Annals of Pure and Applied Logic 166 (11):1186-1198.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The large cardinals between supercompact and almost-huge.Norman Lewis Perlmutter - 2015 - Archive for Mathematical Logic 54 (3-4):257-289.
    I analyze the hierarchy of large cardinals between a supercompact cardinal and an almost-huge cardinal. Many of these cardinals are defined by modifying the definition of a high-jump cardinal. A high-jump cardinal is defined as the critical point of an elementary embedding j:V→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j: V \to M}$$\end{document} such that M is closed under sequences of length sup{j|f:κ→κ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sup\{{j\,|\,f: \kappa \to \kappa}\}}$$\end{document}. Some of the other (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Partial near supercompactness.Jason Aaron Schanker - 2013 - Annals of Pure and Applied Logic 164 (2):67-85.
    A cardinal κ is nearly θ-supercompact if for every A⊆θ, there exists a transitive M⊨ZFC− closed under θ and j″θ∈N.2 This concept strictly refines the θ-supercompactness hierarchy as every θ-supercompact cardinal is nearly θ-supercompact, and every nearly 2θ<κ-supercompact cardinal κ is θ-supercompact. Moreover, if κ is a θ-supercompact cardinal for some θ such that θ<κ=θ, we can move to a forcing extension preserving all cardinals below θ++ where κ remains θ-supercompact but is not nearly θ+-supercompact. We will also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Supercompactness and Measurable Limits of Strong Cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (2):629-639.
    In this paper, two theorems concerning measurable limits of strong cardinals and supercompactness are proven. This generalizes earlier work, both individual and joint with Shelah.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some structural results concerning supercompact cardinals.Arthur Apter - 2001 - Journal of Symbolic Logic 66 (4):1919-1927.
    We show how the forcing of [5] can be iterated so as to get a model containing supercompact cardinals in which every measurable cardinal δ is δ + supercompact. We then apply this iteration to prove three additional theorems concerning the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Identity crises and strong compactness.Arthur Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Some remarks on indestructibility and Hamkins? lottery preparation.Arthur W. Apter - 2003 - Archive for Mathematical Logic 42 (8):717-735.
    .In this paper, we first prove several general theorems about strongness, supercompactness, and indestructibility, along the way giving some new applications of Hamkins’ lottery preparation forcing to indestructibility. We then show that it is consistent, relative to the existence of cardinals κ<λ so that κ is λ supercompact and λ is inaccessible, for the least strongly compact cardinal κ to be the least strong cardinal and to have its strongness, but not its strong compactness, indestructible under κ-strategically closed forcing.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Characterizing strong compactness via strongness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (4):375.
    We construct a model in which the strongly compact cardinals can be non-trivially characterized via the statement “κ is strongly compact iff κ is a measurable limit of strong cardinals”. If our ground model contains large enough cardinals, there will be supercompact cardinals in the universe containing this characterization of the strongly compact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Failure of GCH and the level by level equivalence between strong compactness and supercompactness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (6):587.
    We force and obtain three models in which level by level equivalence between strong compactness and supercompactness holds and in which, below the least supercompact cardinal, GCH fails unboundedly often. In two of these models, GCH fails on a set having measure 1 with respect to certain canonical measures. There are no restrictions in all of our models on the structure of the class of supercompact cardinals.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Level by level equivalence and strong compactness.Arthur W. Apter - 2004 - Mathematical Logic Quarterly 50 (1):51.
    We force and construct models in which there are non-supercompact strongly compact cardinals which aren't measurable limits of strongly compact cardinals and in which level by level equivalence between strong compactness and supercompactness holds non-trivially except at strongly compact cardinals. In these models, every measurable cardinal κ which isn't either strongly compact or a witness to a certain phenomenon first discovered by Menas is such that for every regular cardinal λ > κ, κ is λ strongly compact iff κ is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.
    We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
    A cardinal κ is tall if for every ordinal θ there is an embedding j: V → M with critical point κ such that j > θ and Mκ ⊆ M. Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
    Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Aspects of strong compactness, measurability, and indestructibility.Arthur W. Apter - 2002 - Archive for Mathematical Logic 41 (8):705-719.
    We prove three theorems concerning Laver indestructibility, strong compactness, and measurability. We then state some related open questions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.
    Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On measurable limits of compact cardinals.Arthur Apter - 1999 - Journal of Symbolic Logic 64 (4):1675-1688.
    We extend earlier work (both individual and joint with Shelah) and prove three theorems about the class of measurable limits of compact cardinals, where a compact cardinal is one which is either strongly compact or supercompact. In particular, we construct two models in which every measurable limit of compact cardinals below the least supercompact limit of supercompact cardinals possesses non-trivial degrees of supercompactness. In one of these models, every measurable limit of compact cardinals is a limit of supercompact cardinals and (...)
    Download  
     
    Export citation  
     
    Bookmark