Switch to: References

Add citations

You must login to add citations.
  1. The large cardinals between supercompact and almost-huge.Norman Lewis Perlmutter - 2015 - Archive for Mathematical Logic 54 (3-4):257-289.
    I analyze the hierarchy of large cardinals between a supercompact cardinal and an almost-huge cardinal. Many of these cardinals are defined by modifying the definition of a high-jump cardinal. A high-jump cardinal is defined as the critical point of an elementary embedding j:V→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${j: V \to M}$$\end{document} such that M is closed under sequences of length sup{j|f:κ→κ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sup\{{j\,|\,f: \kappa \to \kappa}\}}$$\end{document}. Some of the other (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strongly compact cardinals and the continuum function.Arthur W. Apter, Stamatis Dimopoulos & Toshimichi Usuba - 2021 - Annals of Pure and Applied Logic 172 (9):103013.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Destruction or preservation as you like it.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
    The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
    A cardinal κ is tall if for every ordinal θ there is an embedding j: V → M with critical point κ such that j > θ and Mκ ⊆ M. Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On the indestructibility aspects of identity crisis.Grigor Sargsyan - 2009 - Archive for Mathematical Logic 48 (6):493-513.
    We investigate the indestructibility properties of strongly compact cardinals in universes where strong compactness suffers from identity crisis. We construct an iterative poset that can be used to establish Kimchi–Magidor theorem from (in The independence between the concepts of compactness and supercompactness, circulated manuscript), i.e., that the first n strongly compact cardinals can be the first n measurable cardinals. As an application, we show that the first n strongly compact cardinals can be the first n measurable cardinals while the strong (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Fragility and indestructibility II.Spencer Unger - 2015 - Annals of Pure and Applied Logic 166 (11):1110-1122.
    Download  
     
    Export citation  
     
    Bookmark   7 citations