Switch to: References

Citations of:

Mathematical proof

Mind 38 (149):1-25 (1929)

Add citations

You must login to add citations.
  1. The Church-Turing Thesis.B. Jack Copeland - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.
    There are various equivalent formulations of the Church-Turing thesis. A common one is that every effective computation can be carried out by a Turing machine. The Church-Turing thesis is often misunderstood, particularly in recent writing in the philosophy of mind.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Later Wittgenstein on ‘Truth’ and Realism in Mathematics.Philip Bold - 2024 - Philosophy 99 (1):27-51.
    I show that Wittgenstein's critique of G.H. Hardy's mathematical realism naturally extends to Paul Benacerraf's influential paper, ‘Mathematical Truth’. Wittgenstein accuses Hardy of hastily analogizing mathematical and empirical propositions, thus leading to a picture of mathematical reality that is somehow akin to empirical reality despite the many puzzles this creates. Since Benacerraf relies on that very same analogy to raise problems about mathematical ‘truth’ and the alleged ‘reality’ to which it corresponds, his major argument falls prey to the same critique. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tba.Juliet Floyd - 2016 - Nordic Wittgenstein Review 5 (2):7-89.
    [This Invited Paper will be published in December 2016.].
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Audience role in mathematical proof development.Zoe Ashton - 2020 - Synthese 198 (Suppl 26):6251-6275.
    The role of audiences in mathematical proof has largely been neglected, in part due to misconceptions like those in Perelman and Olbrechts-Tyteca which bar mathematical proofs from bearing reflections of audience consideration. In this paper, I argue that mathematical proof is typically argumentation and that a mathematician develops a proof with his universal audience in mind. In so doing, he creates a proof which reflects the standards of reasonableness embodied in his universal audience. Given this framework, we can better understand (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Empirical regularities in Wittgenstein's philosophy of mathematics.Mark Steiner - 2009 - Philosophia Mathematica 17 (1):1-34.
    During the course of about ten years, Wittgenstein revised some of his most basic views in philosophy of mathematics, for example that a mathematical theorem can have only one proof. This essay argues that these changes are rooted in his growing belief that mathematical theorems are ‘internally’ connected to their canonical applications, i.e. , that mathematical theorems are ‘hardened’ empirical regularities, upon which the former are supervenient. The central role Wittgenstein increasingly assigns to empirical regularities had profound implications for all (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Wittgenstein on Proof and Concept-Formation.Sorin Bangu - forthcoming - Philosophical Quarterly.
    In his Remarks on the Foundations of Mathematics, Wittgenstein claims, puzzlingly, that ‘the proof creates a new concept’ (RFM III-41). This paper aims to contribute to clarifying this idea, and to showing how it marks a major break with the traditional conception of proof. Moreover, since the most natural way to understand his claim is open to criticism, a secondary goal of what follows is to offer an interpretation of it that neutralizes the objection. The discussion proceeds by analysing a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical platonism and the causal relevance of abstracta.Barbara Gail Montero - 2022 - Synthese 200 (6):1-18.
    Many mathematicians are platonists: they believe that the axioms of mathematics are true because they express the structure of a nonspatiotemporal, mind independent, realm. But platonism is plagued by a philosophical worry: it is unclear how we could have knowledge of an abstract, realm, unclear how nonspatiotemporal objects could causally affect our spatiotemporal cognitive faculties. Here I aim to make room in our metaphysical picture of the world for the causal relevance of abstracta.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Correspondence to Reality in Ethics.Mario Brandhorst - 2015 - Philosophical Investigations 38 (3):227-250.
    This paper examines the view of ethical language that Wittgenstein took in later years. It argues that according to this view, ethics falls into place as a part of our natural history, while every sense of the mystical or supernatural that once surrounded it is irrevocably lost. Moreover, Wittgenstein argues that ethical language does not correspond to reality “in the way” in which a physical theory does. I propose an interpretation of this claim that shows how it sets his view (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Beyond the Tractatus Wars: The New Wittgenstein Debate.Rupert J. Read & Matthew A. Lavery (eds.) - 2011 - New York: Routledge.
    Over fifteen years have passed since Cora Diamond and James Conant turned Wittgenstein scholarship upside down with the program of “resolute” reading, and ten years since this reading was crystallized in the major collection _The New Wittgenstein_. This approach remains at the center of the debate about Wittgenstein and his philosophy, and this book draws together the latest thinking of the world’s leading Tractatarian scholars and promising newcomers. Showcasing one piece alternately from each “camp”, _Beyond the Tractatus Wars_ pairs newly (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Turing and Von Neumann: From Logic to the Computer.B. Jack Copeland & Zhao Fan - 2023 - Philosophies 8 (2):22.
    This article provides a detailed analysis of the transfer of a key cluster of ideas from mathematical logic to computing. We demonstrate the impact of certain of Turing’s logico-philosophical concepts from the mid-1930s on the emergence of the modern electronic computer—and so, in consequence, Turing’s impact on the direction of modern philosophy, via the computational turn. We explain why both Turing and von Neumann saw the problem of developing the electronic computer as a problem in logic, and we describe their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics, ethics and purism: an application of MacIntyre’s virtue theory.Paul Ernest - 2020 - Synthese 199 (1-2):3137-3167.
    A traditional problem of ethics in mathematics is the denial of social responsibility. Pure mathematics is viewed as neutral and value free, and therefore free of ethical responsibility. Applications of mathematics are seen as employing a neutral set of tools which, of themselves, are free from social responsibility. However, mathematicians are convinced they know what constitutes good mathematics. Furthermore many pure mathematicians are committed to purism, the ideology that values purity above applications in mathematics, and some historical reasons for this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wittgenstein as his own worst enemy: The case of gödel's theorem.Mark Steiner - 2001 - Philosophia Mathematica 9 (3):257-279.
    Remarks on the Foundations of Mathematics, Wittgenstein, despite his official 'mathematical nonrevisionism', slips into attempting to refute Gödel's theorem. Actually, Wittgenstein could have used Gödel's theorem to good effect, to support his view that proof, and even truth, are 'family resemblance' concepts. The reason that Wittgenstein did not see all this is that Gödel's theorem had become an icon of mathematical realism, and he was blinded by his own ideology. The essay is a reply to Juliet Floyd's work on Gödel: (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Philosophical pictures about mathematics: Wittgenstein and contradiction.Hiroshi Ohtani - 2018 - Synthese 195 (5):2039-2063.
    In the scholarship on Wittgenstein’s later philosophy of mathematics, the dominant interpretation is a theoretical one that ascribes to Wittgenstein some type of ‘ism’ such as radical verificationism or anti-realism. Essentially, he is supposed to provide a positive account of our mathematical practice based on some basic assertions. However, I claim that he should not be read in terms of any ‘ism’ but instead should be read as examining philosophical pictures in the sense of unclear conceptions. The contrast here is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Is Lyric Philosophy?Jan Zwicky - 2014 - Common Knowledge 20 (1):14-27.
    These sixty-one numbered paragraphs offer an overview of the idea and practice of lyric philosophy. They draw heavily on the author's texts Lyric Philosophy, Wisdom & Metaphor, and “Bringhurst's Presocratics: Lyric and Ecology”. The present essay outlines key concepts — clarity as resonance, metaphor as gestalt shift, meaning as gesture, the overlap between philosophy and poetry, the nature of lyric truth — and suggests that they are essential to an adequate epistemology. These concepts allow us to address serious gaps in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Turing: The Great Unknown.Aurea Anguera, Juan A. Lara, David Lizcano, María-Aurora Martínez, Juan Pazos & F. David de la Peña - 2020 - Foundations of Science 25 (4):1203-1225.
    Turing was an exceptional mathematician with a peculiar and fascinating personality and yet he remains largely unknown. In fact, he might be considered the father of the von Neumann architecture computer and the pioneer of Artificial Intelligence. And all thanks to his machines; both those that Church called “Turing machines” and the a-, c-, o-, unorganized- and p-machines, which gave rise to evolutionary computations and genetic programming as well as connectionism and learning. This paper looks at all of these and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Anti-foundationalist Philosophy of Mathematics and Mathematical Proofs.Stanisław Krajewski - 2020 - Studia Humana 9 (3-4):154-164.
    The Euclidean ideal of mathematics as well as all the foundational schools in the philosophy of mathematics have been contested by the new approach, called the “maverick” trend in the philosophy of mathematics. Several points made by its main representatives are mentioned – from the revisability of actual proofs to the stress on real mathematical practice as opposed to its idealized reconstruction. Main features of real proofs are then mentioned; for example, whether they are convincing, understandable, and/or explanatory. Therefore, the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The dialectical tier of mathematical proof.Andrew Aberdein - 2011 - In Frank Zenker (ed.), Argumentation: Cognition & Community. Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), May 18--21, 2011. OSSA.
    Ralph Johnson argues that mathematical proofs lack a dialectical tier, and thereby do not qualify as arguments. This paper argues that, despite this disavowal, Johnson’s account provides a compelling model of mathematical proof. The illative core of mathematical arguments is held to strict standards of rigour. However, compliance with these standards is itself a matter of argument, and susceptible to challenge. Hence much actual mathematical practice takes place in the dialectical tier.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Teaching and Learning with Wittgenstein and Turing: Sailing the Seas of Social Media.Juliet Floyd - 2019 - Journal of Philosophy of Education 53 (4):715-733.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 257--289.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Questions of Proof.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bridging the gap between argumentation theory and the philosophy of mathematics.Alison Pease, Alan Smaill, Simon Colton & John Lee - 2009 - Foundations of Science 14 (1-2):111-135.
    We argue that there are mutually beneficial connections to be made between ideas in argumentation theory and the philosophy of mathematics, and that these connections can be suggested via the process of producing computational models of theories in these domains. We discuss Lakatos’s work (Proofs and Refutations, 1976) in which he championed the informal nature of mathematics, and our computational representation of his theory. In particular, we outline our representation of Cauchy’s proof of Euler’s conjecture, in which we use work (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The parallel structure of mathematical reasoning.Andrew Aberdein - 2012 - In Alison Pease & Brendan Larvor (eds.), Proceedings of the Symposium on Mathematical Practice and Cognition Ii: A Symposium at the Aisb/Iacap World Congress 2012. Society for the Study of Artificial Intelligence and the Simulation of Behaviour. pp. 7--14.
    This paper proposes an account of mathematical reasoning as parallel in structure: the arguments which mathematicians use to persuade each other of their results comprise the argumentational structure; the inferential structure is composed of derivations which offer a formal counterpart to these arguments. Some conflicts about the foundations of mathematics correspond to disagreements over which steps should be admissible in the inferential structure. Similarly, disagreements over the admissibility of steps in the argumentational structure correspond to different views about mathematical practice. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wittgenstein et le lien entre la signification d’un énoncé mathématique et sa preuve.Mathieu Marion & Mitsuhiro Okada - 2012 - Philosophiques 39 (1):101-124.
    The thesis according to which the meaning of a mathematical sentence is given by its proof was held by both Wittgenstein and the intuitionists, following Heyting and Dummett. In this paper, we clarify the meaning of this thesis for Wittgenstein, showing how his position differs from that of the intuitionists. We show how the thesis originates in his thoughts, from the middle period, about proofs by induction, and we sketch his answers to a number of objections, including the idea that, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Realism, anti-realism, quietism: Wittgenstein’s stance.Pasquale Frascolla - 2014 - Grazer Philosophische Studien 89 (1):11-21.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The unity of logic, pedagogy and foundations in Grassmann's mathematical work.Albert C. Lewis - 2004 - History and Philosophy of Logic 25 (1):15-36.
    Hermann Grassmann's Ausdehnungslehre of 1844 and his Lehrbuch der Arithmetik of 1861 are landmark works in mathematics; the former not only developed new mathematical fields but also both contributed to the setting of modern standards of rigor. Their very modernity, however, may obscure features of Grassmann's view of the foundations of mathematics that were not adopted since. Grassmann gave a key role to the learning of mathematics that affected his method of presentation, including his emphasis on making initial assumptions explicit. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematics and Symbolic Logics: Some Notes on an Uneasy Relationship.I. Grattan-Guinness - 1999 - History and Philosophy of Logic 20 (3-4):159-167.
    Symbolic logics tend to be too mathematical for the philosophers and too philosophical for the mathematicians; and their history is too historical for most mathematicians, philosophers and logicians. This paper reflects upon these professional demarcations as they have developed during the century.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Physicalism Without the Idols of Mathematics.László E. Szabó - 2023 - Foundations of Science:1-20.
    I will argue that the ontological doctrine of physicalism inevitably entails the denial that there is anything conceptual in logic and mathematics. The elements of a formal system, even if they are tagged by suggestive names, are merely meaningless parts of a physically existing machinery, which have nothing to do with concepts, because they have nothing to do with the actual things. The only situation in which they can become meaning-carriers is when they are involved in a physical theory. But (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Threefold Puzzle of Negation and the Limits of Sense.Jean-Philippe Narboux - 2022 - In Jens Pier (ed.), Limits of Intelligibility: Issues from Kant and Wittgenstein. London: Routledge.
    This paper investigates a particular philosophical puzzle via an examination of its status in the writings of Wittgenstein. The puzzle concerns negation and can take on three interrelated guises. The first puzzle is how not-p can so much as negate p at all – for if p is not the case, then nothing corresponds to p. The second puzzle is how not-p can so much as negate p at all when not-p rejects p not as false but as unintelligible – (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Using Crowdsourced Mathematics to Understand Mathematical Practice.Alison Pease, Ursula Martin, Fenner Stanley Tanswell & Andrew Aberdein - 2020 - ZDM 52 (6):1087-1098.
    Records of online collaborative mathematical activity provide us with a novel, rich, searchable, accessible and sizeable source of data for empirical investigations into mathematical practice. In this paper we discuss how the resources of crowdsourced mathematics can be used to help formulate and answer questions about mathematical practice, and what their limitations might be. We describe quantitative approaches to studying crowdsourced mathematics, reviewing work from cognitive history (comparing individual and collaborative proofs); social psychology (on the prospects for a measure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A metaphysical foundation for mathematical philosophy.Wójtowicz Krzysztof & Skowron Bartłomiej - 2022 - Synthese 200 (4):1-28.
    Although mathematical philosophy is flourishing today, it remains subject to criticism, especially from non-analytical philosophers. The main concern is that even if formal tools serve to clarify reasoning, they themselves contribute nothing new or relevant to philosophy. We defend mathematical philosophy against such concerns here by appealing to its metaphysical foundations. Our thesis is that mathematical philosophy can be founded on the phenomenological theory of ideas as developed by Roman Ingarden. From this platonist perspective, the “unreasonable effectiveness of mathematics in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionism and Logical Tolerance.B. G. Sundholm - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wittgenstein on the contradictions in logic and in the foundations of mathematics.Z. A. Sokuler - 1988 - Philosophia Mathematica (1):21-28.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof and truth in Lakatos's masterpiece.James Robert Brown - 1990 - International Studies in the Philosophy of Science 4 (2):117 – 130.
    Abstract Proofs and Refutations is Lakatos's masterpiece. This article investigates some of its central themes, in particular: the nature of proofs ('Proofs do not prove, they improve'); the nature of definitions (real, not nominal); and the consequences of all this for ontology (platonism vs Popper's World Three).
    Download  
     
    Export citation  
     
    Bookmark  
  • Simulation, computation and dynamics in economics.K. Vela Velupillai & Stefano Zambelli - 2015 - Journal of Economic Methodology 22 (1):1-27.
    Computation and Simulation have always played a role in economics – whether it be pure economic theory or any variant of applied, especially policy-oriented, macro- and microeconomics or what has increasingly come to be called empirical or experimental economics. Computations and simulations are also intrinsically dynamic. This triptych – computation, simulation and dynamic – is given natural foundations, mainly as a result of developments in the mathematics underpinnings in the potentials of computing, using digital technology. A running theme in this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification of mathematical theories.Krzysztof Wójtowicz - 1998 - Foundations of Science 3 (2):207-229.
    In this article the problem of unification of mathematical theories is discussed. We argue, that specific problems arise here, which are quite different than the problems in the case of empirical sciences. In particular, the notion of unification depends on the philosophical standpoint. We give an analysis of the notion of unification from the point of view of formalism, Gödel's platonism and Quine's realism. In particular we show, that the concept of “having the same object of study” should be made (...)
    Download  
     
    Export citation  
     
    Bookmark