Switch to: References

Add citations

You must login to add citations.
  1. Inquiries into Cognition: Wittgenstein’s Language-Games and Peirce’s Semeiosis for the Philosophy of Cognition.Andrey Pukhaev - 2013 - Dissertation, Gregorian University
    SUMMARY Major theories of philosophical psychology and philosophy of mind are examined on the basis of the fundamental questions of ontology, metaphysics, epistemology, semantics and logic. The result is the choice between language of eliminative reductionism and dualism, neither of which answers properly the relation between mind and body. In the search for a non–dualistic and non–reductive language, Wittgenstein’s notion of language–games as the representative links between language and the world is considered together with Peirce’s semeiosis of cognition. The result (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sobre a Interface entre Conceito e Intuição na Noção Deexplicação Matemática.Humberto de Assis Clímaco - 2007 - Anais Do IX Encontro Nacional de Educação Matemática.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Mind as Neural Software? Understanding Functionalism, Computationalism, and Computational Functionalism.Gualtiero Piccinini - 2010 - Philosophy and Phenomenological Research 81 (2):269-311.
    Defending or attacking either functionalism or computationalism requires clarity on what they amount to and what evidence counts for or against them. My goal here is not to evaluate their plausibility. My goal is to formulate them and their relationship clearly enough that we can determine which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and computationalism, recruit recent philosophical work on mechanisms and computation to shed light on them, and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Superminds: People Harness Hypercomputation, and More.Mark Phillips, Selmer Bringsjord & M. Zenzen - 2003 - Dordrecht, Netherland: Springer Verlag.
    When Ken Malone investigates a case of something causing mental static across the United States, he is teleported to a world that doesn't exist.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical realism and gödel's incompleteness theorems.Richard Tieszen - 1994 - Philosophia Mathematica 2 (3):177-201.
    In this paper I argue that it is more difficult to see how Godel's incompleteness theorems and related consistency proofs for formal systems are consistent with the views of formalists, mechanists and traditional intuitionists than it is to see how they are consistent with a particular form of mathematical realism. If the incompleteness theorems and consistency proofs are better explained by this form of realism then we can also see how there is room for skepticism about Church's Thesis and the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The first computational theory of mind and brain: A close look at McCulloch and Pitts' Logical Calculus of Ideas Immanent in Nervous Activity.Gualtiero Piccinini - 2004 - Synthese 141 (2):175-215.
    Despite its significance in neuroscience and computation, McCulloch and Pitts's celebrated 1943 paper has received little historical and philosophical attention. In 1943 there already existed a lively community of biophysicists doing mathematical work on neural networks. What was novel in McCulloch and Pitts's paper was their use of logic and computation to understand neural, and thus mental, activity. McCulloch and Pitts's contributions included (i) a formalism whose refinement and generalization led to the notion of finite automata (an important formalism in (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Turing's rules for the imitation game.Gualtiero Piccinini - 2000 - Minds and Machines 10 (4):573-582.
    In the 1950s, Alan Turing proposed his influential test for machine intelligence, which involved a teletyped dialogue between a human player, a machine, and an interrogator. Two readings of Turing's rules for the test have been given. According to the standard reading of Turing's words, the goal of the interrogator was to discover which was the human being and which was the machine, while the goal of the machine was to be indistinguishable from a human being. According to the literal (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Alan Turing and the mathematical objection.Gualtiero Piccinini - 2003 - Minds and Machines 13 (1):23-48.
    This paper concerns Alan Turing’s ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, for (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Mathematical roots of phenomenology: Husserl and the concept of number.Mirja Hartimo - 2006 - History and Philosophy of Logic 27 (4):319-337.
    The paper examines the roots of Husserlian phenomenology in Weierstrass's approach to analysis. After elaborating on Weierstrass's programme of arithmetization of analysis, the paper examines Husserl's Philosophy of Arithmetic as an attempt to provide foundations to analysis. The Philosophy of Arithmetic consists of two parts; the first discusses authentic arithmetic and the second symbolic arithmetic. Husserl's novelty is to use Brentanian descriptive analysis to clarify the fundamental concepts of arithmetic in the first part. In the second part, he founds the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Does Science Progress Towards Ever Higher Solvability Through Feedbacks Between Insights and Routines?Witold Marciszewski - 2018 - Studia Semiotyczne 32 (2):153-185.
    The affirmative answer to the title question is justified in two ways: logical and empirical. The logical justification is due to Gödel’s discovery that in any axiomatic formalized theory, having at least the expressive power of PA, at any stage of development there must appear unsolvable problems. However, some of them become solvable in a further development of the theory in question, owing to subsequent investigations. These lead to new concepts, expressed with additional axioms or rules. Owing to the so-amplified (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stefania Centrone. Logic and Philosophy of Mathematics in the Early Husserl. Synthese Library 345. Dordrecht: Springer, 2010. Pp. xxii + 232. ISBN 978-90-481-3245-4. [REVIEW]Mirja Hartimo - 2010 - Philosophia Mathematica 18 (3):344-349.
    It is beginning to be rather well known that Edmund Husserl, the founder of phenomenological philosophy, was originally a mathematician; he studied with Weierstrass and Kronecker in Berlin, wrote his doctoral dissertation on the calculus of variations, and was then a colleague of Cantor in Halle until he moved to the Göttingen of Hilbert and Klein in 1901. Much of Husserl’s writing prior to 1901 was about mathematics, and arguably the origin of phenomenology was in Husserl’s attempts to give philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consistency, Turing Computability and Gödel’s First Incompleteness Theorem.Robert F. Hadley - 2008 - Minds and Machines 18 (1):1-15.
    It is well understood and appreciated that Gödel’s Incompleteness Theorems apply to sufficiently strong, formal deductive systems. In particular, the theorems apply to systems which are adequate for conventional number theory. Less well known is that there exist algorithms which can be applied to such a system to generate a gödel-sentence for that system. Although the generation of a sentence is not equivalent to proving its truth, the present paper argues that the existence of these algorithms, when conjoined with Gödel’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Problems and riddles: Hilbert and the du Bois-reymonds.D. C. Mc Carty - 2005 - Synthese 147 (1):63-79.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the necessary philosophical premises of the Goedelian arguments.Fano Vincenzo & Graziani Pierluigi - unknown
    Lucas-Penrose type arguments have been the focus of many papers in the literature. In the present paper we attempt to evaluate the consequences of Gödel’s incompleteness theorems for the philosophy of the mind. We argue that the best answer to this question was given by Gödel already in 1951 when he realized that either our intellectual capability is not representable by a Turing Machine, or we can never know with mathematical certainty what such a machine is. But his considerations became (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • La deriva genética como fuerza evolutiva.Ariel Jonathan Roffé - 2015 - In J. Ahumada, N. Venturelli & S. Seno Chibeni (eds.), Selección de Trabajos del IX Encuentro AFHIC y las XXV Jornadas de Epistemología e Historia de la ciencia. pp. 615-626.
    Download  
     
    Export citation  
     
    Bookmark