Switch to: References

Add citations

You must login to add citations.
  1. Filters and large cardinals.Jean-Pierre Levinski - 1995 - Annals of Pure and Applied Logic 72 (2):177-212.
    Assuming the consistency of the theory “ZFC + there exists a measurable cardinal”, we construct 1. a model in which the first cardinal κ, such that 2κ > κ+, bears a normal filter F whose associated boolean algebra is κ+-distributive ,2. a model where there is a measurable cardinal κ such that, for every regular cardinal ρ < κ, 2ρ = ρ++ holds,3. a model of “ZFC + GCH” where there exists a non-measurable cardinal κ bearing a normal filter F (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Winning the Pressing down Game but Not Banach-Mazur.Jakob Kellner, Matti Pauna & Saharon Shelah - 2007 - Journal of Symbolic Logic 72 (4):1323 - 1335.
    Let S be the set of those α ∈ ω₂ that have cofinality ω₁. It is consistent relative to a measurable that the nonempty player wins the pressing down game of length ω₁, but not the Banach-Mazur game of length ω + 1 (both games starting with S).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Supermachines and superminds.Eric Steinhart - 2003 - Minds and Machines 13 (1):155-186.
    If the computational theory of mind is right, then minds are realized by machines. There is an ordered complexity hierarchy of machines. Some finite machines realize finitely complex minds; some Turing machines realize potentially infinitely complex minds. There are many logically possible machines whose powers exceed the Church–Turing limit (e.g. accelerating Turing machines). Some of these supermachines realize superminds. Superminds perform cognitive supertasks. Their thoughts are formed in infinitary languages. They perceive and manipulate the infinite detail of fractal objects. They (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • is a set B with Boolean operations a∨ b (join), a∧ b (meet) and− a (complement), partial ordering a≤ b defined by a∧ b= a and the smallest and greatest element, 0 and 1. By Stone's Representation Theorem, every Boolean algebra is isomorphic to an algebra of subsets of some nonempty set S, under operations a∪ b, a∩ b, S− a, ordered by inclusion, with 0=∅. [REVIEW]Mystery Of Measurability - 2006 - Bulletin of Symbolic Logic 12 (2).
    Download  
     
    Export citation  
     
    Bookmark  
  • More on cichoń's diagram and infinite games.Masaru Kada - 2000 - Journal of Symbolic Logic 65 (4):1713-1724.
    Some cardinal invariants from Cichon's diagram can be characterized using the notion of cut-and-choose games on cardinals. In this paper we give another way to characterize those cardinals in terms of infinite games. We also show that some properties for forcing, such as the Sacks Property, the Laver Property and ω ω -boundingness, are characterized by cut-and-choose games on complete Boolean algebras.
    Download  
     
    Export citation  
     
    Bookmark  
  • More on the cut and choose game.Jindřich Zapletal - 1995 - Annals of Pure and Applied Logic 76 (3):291-301.
    The cut and choose game is one of the infinitary games on a complete Boolean algebra B introduced by Jech. We prove that existence of a winning strategy for II in implies semiproperness of B. If the existence of a supercompact cardinal is consistent then so is “for every 1-distributive algebra B II has a winning strategy in ”.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The hyper-weak distributive law and a related game in Boolean algebras.James Cummings & Natasha Dobrinen - 2007 - Annals of Pure and Applied Logic 149 (1-3):14-24.
    We discuss the relationship between various weak distributive laws and games in Boolean algebras. In the first part we give some game characterizations for certain forms of Prikry’s “hyper-weak distributive laws”, and in the second part we construct Suslin algebras in which neither player wins a certain hyper-weak distributivity game. We conclude that in the constructible universe L, all the distributivity games considered in this paper may be undetermined.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weak distributivity, a problem of Von Neumann and the mystery of measurability.Bohuslav Balcar & Thomas Jech - 2006 - Bulletin of Symbolic Logic 12 (2):241-266.
    This article investigates the weak distributivity of Boolean σ-algebras satisfying the countable chain condition. It addresses primarily the question when such algebras carry a σ-additive measure. We use as a starting point the problem of John von Neumann stated in 1937 in the Scottish Book. He asked if the countable chain condition and weak distributivity are sufficient for the existence of such a measure.Subsequent research has shown that the problem has two aspects: one set theoretic and one combinatorial. Recent results (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fresh function spectra.Vera Fischer, Marlene Koelbing & Wolfgang Wohofsky - 2023 - Annals of Pure and Applied Logic 174 (9):103300.
    Download  
     
    Export citation  
     
    Bookmark  
  • A game on Boolean algebras describing the collapse of the continuum.Miloš S. Kurilić & Boris Šobot - 2009 - Annals of Pure and Applied Logic 160 (1):117-126.
    The game is played on a complete Boolean algebra in ω-many moves. At the beginning White chooses a non-zero element p of and, in the nth move, White chooses a positive pn

    (...)

    Download  
     
    Export citation  
     
    Bookmark  
  • κ-Stationary Subsets of Pκ+Λ, Infinitary Games, and Distributive Laws in Boolean Algebras.Natasha Dobrinen - 2008 - Journal of Symbolic Logic 73 (1):238 - 260.
    We characterize the (κ, Λ, < μ)-distributive law in Boolean algebras in terms of cut and choose games $\scr{G}_{<\mu}^{\kappa}(\lambda)$ , when μ ≤ κ ≤ Λ and κ<κ = κ. This builds on previous work to yield game-theoretic characterizations of distributive laws for almost all triples of cardinals κ, Λ, μ with μ ≤ Λ, under GCH. In the case when μ ≤ κ ≤ Λ and κ<κ = κ, we show that it is necessary to consider whether the κ-stationarity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)On countably closed complete Boolean algebras.Thomas Jech & Saharon Shelah - 1996 - Journal of Symbolic Logic 61 (4):1380-1386.
    It is unprovable that every complete subalgebra of a countably closed complete Boolean algebra is countably closed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Power-collapsing games.Miloš S. Kurilić & Boris Šobot - 2008 - Journal of Symbolic Logic 73 (4):1433-1457.
    The game Gls(κ) is played on a complete Boolean algebra B, by two players. White and Black, in κ-many moves (where κ is an infinite cardinal). At the beginning White chooses a non-zero element p ∈ B. In the α-th move White chooses pα ∈ (0.p)p and Black responds choosing iα ∈ {0.1}. White wins the play iff $\bigwedge _{\beta \in \kappa}\bigvee _{\alpha \geq \beta }p_{\alpha}^{i\alpha}=0$ , where $p_{\alpha}^{0}=p_{\alpha}$ and $p_{\alpha}^{1}=p\ p_{\alpha}$ . The corresponding game theoretic properties of c.B.a.'s are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maharam algebras.Boban Veličković - 2009 - Annals of Pure and Applied Logic 158 (3):190-202.
    Maharam algebras are complete Boolean algebras carrying a positive continuous submeasure. They were introduced and studied by Maharam [D. Maharam, An algebraic characterization of measure algebras, Ann. of Math. 48 154–167] in relation to Von Neumann’s problem on the characterization of measure algebras. The question whether every Maharam algebra is a measure algebra has been the main open problem in this area for around 60 years. It was finally resolved by Talagrand [M. Talagrand, Maharam’s problem, preprint, 31 pages, 2006] who (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • More on the pressing down game.Jakob Kellner & Saharon Shelah - 2011 - Archive for Mathematical Logic 50 (3-4):477-501.
    We investigate the pressing down game and its relation to the Banach Mazur game. In particular we show: consistently, there is a nowhere precipitous normal ideal I on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_2}$$\end{document} such that player nonempty wins the pressing down game of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} on I even if player empty starts.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the weak distributivity game.Anastasis Kamburelis - 1994 - Annals of Pure and Applied Logic 66 (1):19-26.
    We study the gameGfin related to weak distributivity of a given Boolean algebraB. Consider the following implication: ifBis weakly -distributive then player I does not have a winning strategy in the gameGfin. We show that this implication is true for properBbut it is not true in general.
    Download  
     
    Export citation  
     
    Bookmark   4 citations