Switch to: References

Add citations

You must login to add citations.
  1. The Simplest Low Linear Order with No Computable Copies.Andrey Frolov & Maxim Zubkov - 2024 - Journal of Symbolic Logic 89 (1):97-111.
    A low linear order with no computable copy constructed by C. Jockusch and R. Soare has Hausdorff rank equal to$2$. In this regard, the question arises, how simple can be a low linear order with no computable copy from the point of view of the linear order type? The main result of this work is an example of a low strong$\eta $-representation with no computable copy that is the simplest possible example.
    Download  
     
    Export citation  
     
    Bookmark  
  • Degree spectra of real closed fields.Russell Miller & Victor Ocasio González - 2019 - Archive for Mathematical Logic 58 (3-4):387-411.
    Several researchers have recently established that for every Turing degree \, the real closed field of all \-computable real numbers has spectrum \. We investigate the spectra of real closed fields further, focusing first on subfields of the field \ of computable real numbers, then on archimedean real closed fields more generally, and finally on non-archimedean real closed fields. For each noncomputable, computably enumerable set C, we produce a real closed C-computable subfield of \ with no computable copy. Then we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)– CA 0 and order types of countable ordered groups.Reed Solomon - 2001 - Journal of Symbolic Logic 66 (1):192-206.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Up to Equimorphism, Hyperarithmetic Is Recursive.Antonio Montalbán - 2005 - Journal of Symbolic Logic 70 (2):360 - 378.
    Two linear orderings are equimorphic if each can be embedded into the other. We prove that every hyperarithmetic linear ordering is equimorphic to a recursive one. On the way to our main result we prove that a linear ordering has Hausdorff rank less than $\omega _{1}^{\mathit{CK}}$ if and only if it is equimorphic to a recursive one. As a corollary of our proof we prove that, given a recursive ordinal α, the partial ordering of equimorphism types of linear orderings of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Computability of fraïssé limits.Barbara F. Csima, Valentina S. Harizanov, Russell Miller & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (1):66 - 93.
    Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the equimorphism types of linear orderings.Antonio Montalbán - 2007 - Bulletin of Symbolic Logic 13 (1):71-99.
    §1. Introduction. A linear ordering embedsinto another linear ordering if it is isomorphic to a subset of it. Two linear orderings are said to beequimorphicif they can be embedded in each other. This is an equivalence relation, and we call the equivalence classesequimorphism types. We analyze the structure of equimorphism types of linear orderings, which is partially ordered by the embeddability relation. Our analysis is mainly fromthe viewpoints of Computability Theory and Reverse Mathematics. But we also obtain results, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • d-computable Categoricity for Algebraic Fields.Russell Miller - 2009 - Journal of Symbolic Logic 74 (4):1325 - 1351.
    We use the Low Basis Theorem of Jockusch and Soare to show that all computable algebraic fields are d-computably categorical for a particular Turing degree d with d' = θ", but that not all such fields are 0'-computably categorical. We also prove related results about algebraic fields with splitting algorithms, and fields of finite transcendence degree over ℚ.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Copyable Structures.Antonio Montalbán - 2009 - Journal of Symbolic Logic 78 (4):1199-1217.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The -spectrum of a linear order.Russell Miller - 2001 - Journal of Symbolic Logic 66 (2):470-486.
    Slaman and Wehner have constructed structures which distinguish the computable Turing degree 0 from the noncomputable degrees, in the sense that the spectrum of each structure consists precisely of the noncomputable degrees. Downey has asked if this can be done for an ordinary type of structure such as a linear order. We show that there exists a linear order whose spectrum includes every noncomputable Δ 0 2 degree, but not 0. Since our argument requires the technique of permitting below a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Block Relation in Computable Linear Orders.Michael Moses - 2011 - Notre Dame Journal of Formal Logic 52 (3):289-305.
    The block relation B(x,y) in a linear order is satisfied by elements that are finitely far apart; a block is an equivalence class under this relation. We show that every computable linear order with dense condensation-type (i.e., a dense collection of blocks) but no infinite, strongly η-like interval (i.e., with all blocks of size less than some fixed, finite k ) has a computable copy with the nonblock relation ¬ B(x,y) computably enumerable. This implies that every computable linear order has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Every recursive boolean algebra is isomorphic to one with incomplete atoms.Rod Downey - 1993 - Annals of Pure and Applied Logic 60 (3):193-206.
    The theorem of the title is proven, solving an old question of Remmel. The method of proof uses an algebraic technique of Remmel-Vaught combined with a complex tree of strategies argument where the true path is needed to figure out the final isomorphism.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A computable functor from graphs to fields.Russell Miller, Bjorn Poonen, Hans Schoutens & Alexandra Shlapentokh - 2018 - Journal of Symbolic Logic 83 (1):326-348.
    Fried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • New Degree Spectra of Abelian Groups.Alexander G. Melnikov - 2017 - Notre Dame Journal of Formal Logic 58 (4):507-525.
    We show that for every computable ordinal of the form β=δ+2n+1>1, where δ is zero or a limit ordinal and n∈ω, there exists a torsion-free abelian group having an X-computable copy if and only if X is nonlowβ.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Jumps of the Degrees Below a Recursively Enumerable Degree.David R. Belanger & Richard A. Shore - 2018 - Notre Dame Journal of Formal Logic 59 (1):91-107.
    We consider the set of jumps below a Turing degree, given by JB={x':x≤a}, with a focus on the problem: Which recursively enumerable degrees a are uniquely determined by JB? Initially, this is motivated as a strategy to solve the rigidity problem for the partial order R of r.e. degrees. Namely, we show that if every high2 r.e. degree a is determined by JB, then R cannot have a nontrivial automorphism. We then defeat the strategy—at least in the form presented—by constructing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Computable Self-Embeddings of Computable Linear Orderings.Rodney G. Downey, Bart Kastermans & Steffen Lempp - 2009 - Journal of Symbolic Logic 74 (4):1352 - 1366.
    We solve a longstanding question of Rosenstein, and make progress toward solving a longstanding open problem in the area of computable linear orderings by showing that every computable ƞ-like linear ordering without an infinite strongly ƞ-like interval has a computable copy without nontrivial computable self-embedding. The precise characterization of those computable linear orderings which have computable copies without nontrivial computable self-embedding remains open.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Boolean Algebras, Stone Spaces, and the Iterated Turing Jump.Carl G. Jockusch & Robert I. Soare - 1994 - Journal of Symbolic Logic 59 (4):1121 - 1138.
    We show, roughly speaking, that it requires ω iterations of the Turing jump to decode nontrivial information from Boolean algebras in an isomorphism invariant fashion. More precisely, if α is a recursive ordinal, A is a countable structure with finite signature, and d is a degree, we say that A has αth-jump degree d if d is the least degree which is the αth jump of some degree c such there is an isomorphic copy of A with universe ω in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Jump degrees of torsion-free abelian groups.Brooke M. Andersen, Asher M. Kach, Alexander G. Melnikov & Reed Solomon - 2012 - Journal of Symbolic Logic 77 (4):1067-1100.
    We show, for each computable ordinal α and degree $\alpha > {0^{\left( \alpha \right)}}$, the existence of a torsion-free abelian group with proper α th jump degree α.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computability and uncountable linear orders II: Degree spectra.Noam Greenberg, Asher M. Kach, Steffen Lempp & Daniel D. Turetsky - 2015 - Journal of Symbolic Logic 80 (1):145-178.
    Download  
     
    Export citation  
     
    Bookmark  
  • Turing degree spectra of differentially closed fields.David Marker & Russell Miller - 2017 - Journal of Symbolic Logic 82 (1):1-25.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Online, computable and punctual structure theory.Matthew Askes & Rod Downey - 2023 - Logic Journal of the IGPL 31 (6):1251-1293.
    Several papers (e.g. [7, 23, 42]) have recently sought to give general frameworks for online structures and algorithms ([4]), and seeking to connect, if only by analogy, online and computable structure theory. These initiatives build on earlier work on online colouring and other combinatorial algorithms by Bean [10], Kierstead, Trotter et al. [48, 54, 57] and others, as we discuss below. In this paper we will look at such frameworks and illustrate them with examples from the first author’s MSc Thesis (...)
    Download  
     
    Export citation  
     
    Bookmark