Switch to: References

Add citations

You must login to add citations.
  1. How Woodin changed his mind: new thoughts on the Continuum Hypothesis.Colin J. Rittberg - 2015 - Archive for History of Exact Sciences 69 (2):125-151.
    The Continuum Problem has inspired set theorists and philosophers since the days of Cantorian set theory. In the last 15 years, W. Hugh Woodin, a leading set theorist, has not only taken it upon himself to engage in this question, he has also changed his mind about the answer. This paper illustrates Woodin’s solutions to the problem, starting in Sect. 3 with his 1999–2004 argument that Cantor’s hypothesis about the continuum was incorrect. From 2010 onwards, Woodin presents a very different (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A First Glance at Non-Restrictiveness.Benedikt Löwe - 2001 - Philosophia Mathematica 9 (3):347-354.
    Maddy's notion of restrictiveness has many problematic aspects, one of them being that it is almost impossible to show that a theory is not restrictive. In this note the author addresses a crucial question of Martin Goldstern (Vienna) and points to some directions of future research.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Monsters.Andrew Aberdein - 2019 - In Diego Compagna & Stefanie Steinhart (eds.), Monsters, Monstrosities, and the Monstrous in Culture and Society. Vernon Press. pp. 391-412.
    Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The great French mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The weakly compact reflection principle need not imply a high order of weak compactness.Brent Cody & Hiroshi Sakai - 2020 - Archive for Mathematical Logic 59 (1-2):179-196.
    The weakly compact reflection principle\\) states that \ is a weakly compact cardinal and every weakly compact subset of \ has a weakly compact proper initial segment. The weakly compact reflection principle at \ implies that \ is an \-weakly compact cardinal. In this article we show that the weakly compact reflection principle does not imply that \ is \\)-weakly compact. Moreover, we show that if the weakly compact reflection principle holds at \ then there is a forcing extension preserving (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cardinal characteristics at κ in a small u ( κ ) model.A. D. Brooke-Taylor, V. Fischer, S. D. Friedman & D. C. Montoya - 2017 - Annals of Pure and Applied Logic 168 (1):37-49.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Transfinite Cardinals in Paraconsistent Set Theory.Zach Weber - 2012 - Review of Symbolic Logic 5 (2):269-293.
    This paper develops a (nontrivial) theory of cardinal numbers from a naive set comprehension principle, in a suitable paraconsistent logic. To underwrite cardinal arithmetic, the axiom of choice is proved. A new proof of Cantor’s theorem is provided, as well as a method for demonstrating the existence of large cardinals by way of a reflection theorem.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Mathematical proof theory in the light of ordinal analysis.Reinhard Kahle - 2002 - Synthese 133 (1/2):237 - 255.
    We give an overview of recent results in ordinal analysis. Therefore, we discuss the different frameworks used in mathematical proof-theory, namely "subsystem of analysis" including "reverse mathematics", "Kripke-Platek set theory", "explicit mathematics", "theories of inductive definitions", "constructive set theory", and "Martin-Löf's type theory".
    Download  
     
    Export citation  
     
    Bookmark  
  • Reflective Mereology.Bokai Yao - 2023 - Journal of Philosophical Logic 52 (4):1171-1196.
    I propose a new theory of mereology based on a mereological reflection principle. Reflective mereology has natural fusion principles but also refutes certain principles of classical mereology such as Universal Fusion and Fusion Uniqueness. Moreover, reflective mereology avoids Uzquiano’s cardinality problem–the problem that classical mereology tends to clash with set theory when they both quantify over everything. In particular, assuming large cardinals, I construct a model of reflective mereology and second-order ZFCU with Limitation of Size. In the model, classical mereology (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
    For each natural number n, let C(n) be the closed and unbounded proper class of ordinals α such that Vα is a Σn elementary substructure of V. We say that κ is a C(n)-cardinal if it is the critical point of an elementary embedding j : V → M, M transitive, with j(κ) in C(n). By analyzing the notion of C(n)-cardinal at various levels of the usual hierarchy of large cardinal principles we show that, starting at the level of superstrong (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Large cardinals and locally defined well-orders of the universe.David Asperó & Sy-David Friedman - 2009 - Annals of Pure and Applied Logic 157 (1):1-15.
    By forcing over a model of with a class-sized partial order preserving this theory we produce a model in which there is a locally defined well-order of the universe; that is, one whose restriction to all levels H is a well-order of H definable over the structure H, by a parameter-free formula. Further, this forcing construction preserves all supercompact cardinals as well as all instances of regular local supercompactness. It is also possible to define variants of this construction which, in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Notes on the partition property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_\kappa\lambda}$$\end{document}. [REVIEW]Yoshihiro Abe & Toshimichi Usuba - 2012 - Archive for Mathematical Logic 51 (5-6):575-589.
    We investigate the partition property of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{\kappa}\lambda}$$\end{document}. Main results of this paper are as follows: (1) If λ is the least cardinal greater than κ such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{\kappa}\lambda}$$\end{document} carries a (λκ, 2)-distributive normal ideal without the partition property, then λ is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^1_n}$$\end{document}-indescribable for all n < ω but not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Homogeneously Suslin sets in tame mice.Farmer Schlutzenberg - 2012 - Journal of Symbolic Logic 77 (4):1122-1146.
    This paper studies homogeneously Suslin (hom) sets of reals in tame mice. The following results are established: In 0 ¶ the hom sets are precisely the [Symbol] sets. In M n every hom set is correctly [Symbol] and (δ + 1)-universally Baire where ä is the least Woodin. In M u every hom set is <λ-hom, where λ is the supremum of the Woodins.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hierarchies of ineffabilities.Toshimichi Usuba - 2013 - Mathematical Logic Quarterly 59 (3):230-237.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Nonstationary Ideal in the Pmax Extension.Paul B. Larson - 2007 - Journal of Symbolic Logic 72 (1):138 - 158.
    The forcing construction Pmax, invented by W. Hugh Woodin, produces a model whose collection of subsets of ω₁ is in some sense maximal. In this paper we study the Boolean algebra induced by the nonstationary ideal on ω₁ in this model. Among other things we show that the induced quotient does not have a simply definable form. We also prove several results about saturation properties of the ideal in this extension.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Thin equivalence relations and inner models.Philipp Schlicht - 2014 - Annals of Pure and Applied Logic 165 (10):1577-1625.
    We describe the inner models with representatives in all equivalence classes of thin equivalence relations in a given projective pointclass of even level assuming projective determinacy. The main result shows that these models are characterized by their correctness and the property that they correctly compute the tree from the appropriate scale. The main step towards this characterization shows that the tree from a scale can be reconstructed in a generic extension of an iterate of a mouse. We then construct models (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On ultrafilter extensions of first-order models and ultrafilter interpretations.Nikolai L. Poliakov & Denis I. Saveliev - 2021 - Archive for Mathematical Logic 60 (5):625-681.
    There exist two known types of ultrafilter extensions of first-order models, both in a certain sense canonical. One of them comes from modal logic and universal algebra, and in fact goes back to Jónsson and Tarski :891–939, 1951; 74:127–162, 1952). Another one The infinity project proceeding, Barcelona, 2012) comes from model theory and algebra of ultrafilters, with ultrafilter extensions of semigroups as its main precursor. By a classical fact of general topology, the space of ultrafilters over a discrete space is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Axiom of Canonicity.Jerzy Pogonowski - forthcoming - Logic and Logical Philosophy:1-29.
    The axiom of canonicity was introduced by the famous Polish logician Roman Suszko in 1951 as an explication of Skolem's Paradox and a precise representation of the axiom of restriction in set theory proposed much earlier by Abraham Fraenkel. We discuss the main features of Suszko's contribution and hint at its possible further applications.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Square and non-reflection in the context of Pκλ.Greg Piper - 2006 - Annals of Pure and Applied Logic 142 (1):76-97.
    We define , a square principle in the context of , and prove its consistency relative to ZFC by a directed-closed forcing and hence that it is consistent to have hold when κ is supercompact, whereas □κ is known to fail under this condition. The new principle is then extended to produce a principle with a non-reflection property. Another variation on is also considered, this one based on a family of club subsets of . Finally, a new square principle for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intrinsic Justifications for Large-Cardinal Axioms.Rupert McCallum - 2021 - Philosophia Mathematica 29 (2):195-213.
    ABSTRACT We shall defend three philosophical theses about the extent of intrinsic justification based on various technical results. We shall present a set of theorems which indicate intriguing structural similarities between a family of “weak” reflection principles roughly at the level of those considered by Tait and Koellner and a family of “strong” reflection principles roughly at the level of those of Welch and Roberts, which we claim to lend support to the view that the stronger reflection principles are intrinsically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The category of inner models.Peter Koepke - 2002 - Synthese 133 (1-2):275 - 303.
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparing inductive and circular definitions: Parameters, complexity and games.Kai-Uwe Küdhnberger, Benedikt Löwe, Michael Möllerfeld & Philip Welch - 2005 - Studia Logica 81 (1):79 - 98.
    Gupta-Belnap-style circular definitions use all real numbers as possible starting points of revision sequences. In that sense they are boldface definitions. We discuss lightface versions of circular definitions and boldface versions of inductive definitions.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Canonical measure assignments.Steve Jackson & Benedikt Löwe - 2013 - Journal of Symbolic Logic 78 (2):403-424.
    We work under the assumption of the Axiom of Determinacy and associate a measure to each cardinal $\kappa < \aleph_{\varepsilon_0}$ in a recursive definition of a canonical measure assignment. We give algorithmic applications of the existence of such a canonical measure assignment (computation of cofinalities, computation of the Kleinberg sequences associated to the normal ultrafilters on all projective ordinals).
    Download  
     
    Export citation  
     
    Bookmark  
  • The axiom of real Blackwell determinacy.Daisuke Ikegami, David de Kloet & Benedikt Löwe - 2012 - Archive for Mathematical Logic 51 (7-8):671-685.
    The theory of infinite games with slightly imperfect information has been developed for games with finitely and countably many moves. In this paper, we shift the discussion to games with uncountably many possible moves, introducing the axiom of real Blackwell determinacy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{Bl-AD}_\mathbb{R}}$$\end{document} (as an analogue of the axiom of real determinacy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf{AD}_\mathbb{R}}$$\end{document}). We prove that the consistency strength of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)A diamond-plus principle consistent with AD.Daniel W. Cunningham - 2020 - Archive for Mathematical Logic 59 (5-6):755-775.
    After showing that \ refutes \ for all regular cardinals \, we present a diamond-plus principle \ concerning all subsets of \. Using a forcing argument, we prove that \ holds in Steel’s core model \}}\), an inner model in which the axiom of determinacy can hold. The combinatorial principle \ is then extended, in \}}\), to successor cardinals \ and to certain cardinals \ that are not ineffable. Here \ is the supremum of the ordinals that are the surjective (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inverse limit reflection and the structure of L.Scott S. Cramer - 2015 - Journal of Mathematical Logic 15 (1):1550001.
    We extend the results of Laver on using inverse limits to reflect large cardinals of the form, there exists an elementary embedding Lα → Lα. Using these inverse limit reflection embeddings directly and by broadening the collection of U-representable sets, we prove structural results of L under the assumption that there exists an elementary embedding j : L → L. As a consequence we show the impossibility of a generalized inverse limit X-reflection result for X ⊆ Vλ+1, thus focusing the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Easton’s theorem in the presence of Woodin cardinals.Brent Cody - 2013 - Archive for Mathematical Logic 52 (5-6):569-591.
    Under the assumption that δ is a Woodin cardinal and GCH holds, I show that if F is any class function from the regular cardinals to the cardinals such that (1) ${\kappa < {\rm cf}(F(\kappa))}$ , (2) ${\kappa < \lambda}$ implies ${F(\kappa) \leq F(\lambda)}$ , and (3) δ is closed under F, then there is a cofinality-preserving forcing extension in which 2 γ = F(γ) for each regular cardinal γ < δ, and in which δ remains Woodin. Unlike the analogous (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark