Switch to: References

Citations of:

Model theory for infinitary logic

Amsterdam,: North-Holland Pub. Co. (1971)

Add citations

You must login to add citations.
  1. Computable categoricity for pseudo-exponential fields of size ℵ 1.Jesse Johnson - 2014 - Annals of Pure and Applied Logic 165 (7-8):1301-1317.
    We use some notions from computability in an uncountable setting to describe a difference between the “Zilber field” of size ℵ1ℵ1 and the “Zilber cover” of size ℵ1ℵ1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abstract elementary classes stable in ℵ0.Saharon Shelah & Sebastien Vasey - 2018 - Annals of Pure and Applied Logic 169 (7):565-587.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Scott sentences for certain groups.Julia F. Knight & Vikram Saraph - 2018 - Archive for Mathematical Logic 57 (3-4):453-472.
    We give Scott sentences for certain computable groups, and we use index set calculations as a way of checking that our Scott sentences are as simple as possible. We consider finitely generated groups and torsion-free abelian groups of finite rank. For both kinds of groups, the computable ones all have computable \ Scott sentences. Sometimes we can do better. In fact, the computable finitely generated groups that we have studied all have Scott sentences that are “computable d-\” sentence and a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computing the Number of Types of Infinite Length.Will Boney - 2017 - Notre Dame Journal of Formal Logic 58 (1):133-154.
    We show that the number of types of sequences of tuples of a fixed length can be calculated from the number of 1-types and the length of the sequences. Specifically, if κ≤λ, then sup ‖M‖=λ|Sκ|=|)κ. We show that this holds for any abstract elementary class with λ-amalgamation. No such calculation is possible for nonalgebraic types. However, we introduce a subclass of nonalgebraic types for which the same upper bound holds.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Regular relations and the quantifier “there exist uncountably many”.Zarko Mijajlović & Valentina Harizanov - 1983 - Mathematical Logic Quarterly 29 (3):151-161.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Infinitary logic and topological homeomorphisms.T. A. McKee - 1975 - Mathematical Logic Quarterly 21 (1):405-408.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Categoricity transfer in simple finitary abstract elementary classes.Tapani Hyttinen & Meeri Kesälä - 2011 - Journal of Symbolic Logic 76 (3):759 - 806.
    We continue our study of finitary abstract elementary classes, defined in [7]. In this paper, we prove a categoricity transfer theorem for a case of simple finitary AECs. We introduce the concepts of weak κ-categoricity and f-primary models to the framework of א₀-stable simple finitary AECs with the extension property, whereby we gain the following theorem: Let (������, ≼ ������ ) be a simple finitary AEC, weakly categorical in some uncountable κ. Then (������, ≼ ������ ) is weakly categorical in (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An algebraic treatment of the Barwise compactness theory.Isidore Fleischer & Philip Scott - 1991 - Studia Logica 50 (2):217 - 223.
    A theorem on the extendability of certain subsets of a Boolean algebra to ultrafilters which preserve countably many infinite meets (generalizing Rasiowa-Sikorski) is used to pinpoint the mechanism of the Barwise proof in a way which bypasses the set theoretical elaborations.
    Download  
     
    Export citation  
     
    Bookmark  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Arrovian Aggregation of Generalised Expected-Utility Preferences: (Im)possibility Results by Means of Model Theory.Frederik Herzberg - 2018 - Studia Logica 106 (5):947-967.
    Cerreia-Vioglio et al. :341–375, 2011) have proposed a very general axiomatisation of preferences in the presence of ambiguity, viz. Monotonic Bernoullian Archimedean preference orderings. This paper investigates the problem of Arrovian aggregation of such preferences—and proves dictatorial impossibility results for both finite and infinite populations. Applications for the special case of aggregating expected-utility preferences are given. A novel proof methodology for special aggregation problems, based on model theory, is employed.
    Download  
     
    Export citation  
     
    Bookmark  
  • Harmonious logic: Craig’s interpolation theorem and its descendants.Solomon Feferman - 2008 - Synthese 164 (3):341-357.
    Though deceptively simple and plausible on the face of it, Craig's interpolation theorem has proved to be a central logical property that has been used to reveal a deep harmony between the syntax and semantics of first order logic. Craig's theorem was generalized soon after by Lyndon, with application to the characterization of first order properties preserved under homomorphism. After retracing the early history, this article is mainly devoted to a survey of subsequent generalizations and applications, especially of many-sorted interpolation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Iterated elementary embeddings and the model theory of infinitary logic.John T. Baldwin & Paul B. Larson - 2016 - Annals of Pure and Applied Logic 167 (3):309-334.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Scott rank of Polish metric spaces.Michal Doucha - 2014 - Annals of Pure and Applied Logic 165 (12):1919-1929.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Superminds: People Harness Hypercomputation, and More.Mark Phillips, Selmer Bringsjord & M. Zenzen - 2003 - Dordrecht, Netherland: Springer Verlag.
    When Ken Malone investigates a case of something causing mental static across the United States, he is teleported to a world that doesn't exist.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A completeness proof for adapted probability logic.H. Jerome Keisler - 1986 - Annals of Pure and Applied Logic 31:61-70.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Biprobability logic with conditional expectation.Vladimir Ristić, Radosav Đorđević & Nebojša Ikodinović - 2011 - Mathematical Logic Quarterly 57 (4):400-408.
    This paper is devoted to fill the gap in studying logics for biprobability structures. We introduce the logic equation image with two conditional expectation operators and prove the completeness theorem. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Sentences Preserved between Equivalent Topological Bases.T. A. McKee - 1976 - Mathematical Logic Quarterly 22 (1):79-84.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Shelah's stability spectrum and homogeneity spectrum in finite diagrams.Rami Grossberg & Olivier Lessmann - 2002 - Archive for Mathematical Logic 41 (1):1-31.
    We present Saharon Shelah's Stability Spectrum and Homogeneity Spectrum theorems, as well as the equivalence between the order property and instability in the framework of Finite Diagrams. Finite Diagrams is a context which generalizes the first order case. Localized versions of these theorems are presented. Our presentation is based on several papers; the point of view is contemporary and some of the proofs are new. The treatment of local stability in Finite Diagrams is new.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Characterizing equivalential and algebraizable logics by the Leibniz operator.Burghard Herrmann - 1997 - Studia Logica 58 (2):305-323.
    In [14] we used the term finitely algebraizable for algebraizable logics in the sense of Blok and Pigozzi [2] and we introduced possibly infinitely algebraizable, for short, p.i.-algebraizable logics. In the present paper, we characterize the hierarchy of protoalgebraic, equivalential, finitely equivalential, p.i.-algebraizable, and finitely algebraizable logics by properties of the Leibniz operator. A Beth-style definability result yields that finitely equivalential and finitely algebraizable as well as equivalential and p.i.-algebraizable logics can be distinguished by injectivity of the Leibniz operator. Thus, (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Ins and outs of Russell's theory of types.Ali Bora Enderer - unknown
    The thesis examines A.N. Whitehead and B. Russell’s Ramified Theory of Types. It consists of three parts. The first part is devoted to understanding the source of impredicativity implicit in the induction principle. The question I raise here is whether second-order explicit definitions are responsible for cases when impredicativity turns pathological. The second part considers the interplay between the vicious-circle principle and the no-class theory. The main goal is to give an explanation for the predicative restrictions entailed by the vicious-circle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Possible predicates and actual properties.Roy T. Cook - 2019 - Synthese 196 (7):2555-2582.
    In “Properties and the Interpretation of Second-Order Logic” Bob Hale develops and defends a deflationary conception of properties where a property with particular satisfaction conditions actually exists if and only if it is possible that a predicate with those same satisfaction conditions exists. He argues further that, since our languages are finitary, there are at most countably infinitely many properties and, as a result, the account fails to underwrite the standard semantics for second-order logic. Here a more lenient version of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Notes on Cardinals That Are Characterizable by a Complete (Scott) Sentence.Ioannis Souldatos - 2014 - Notre Dame Journal of Formal Logic 55 (4):533-551.
    This is the first part of a study on cardinals that are characterizable by Scott sentences. Building on previous work of Hjorth, Malitz, and Baumgartner, we study which cardinals are characterizable by a Scott sentence $\phi$, in the sense that $\phi$ characterizes $\kappa$, if $\phi$ has a model of size $\kappa$ but no models of size $\kappa^{+}$. We show that the set of cardinals that are characterized by a Scott sentence is closed under successors, countable unions, and countable products. We (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hyperfinite models of adapted probability logic.H. Jerome Keisler - 1986 - Annals of Pure and Applied Logic 31:71-86.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Uniquely undefinable elements.Greg Hjorth - 2010 - Journal of Symbolic Logic 75 (1):269-274.
    There exists a model in a countable language having a unique element which is not definable in $\scr{L}_{\omega _{1},\omega}$.
    Download  
     
    Export citation  
     
    Bookmark  
  • Glimm-Effros for coanalytic equivalence relations.Greg Hjorth - 2009 - Journal of Symbolic Logic 74 (2):402-422.
    Assuming every real has a sharp, we prove that for any $\mathop \prod \limits_\~ _1^1 $ equivalence relation either Borel reduces E₀ or in a $\mathop \Delta \limits_\~ _3^1 $ manner allows the assignment of bounded subsets of ω₁ as complete invariants.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logic of transition systems.Johan Van Benthem & Jan Bergstra - 1994 - Journal of Logic, Language and Information 3 (4):247-283.
    Labeled transition systems are key structures for modeling computation. In this paper, we show how they lend themselves to ordinary logical analysis (without any special new formalisms), by introducing their standard first-order theory. This perspective enables us to raise several basic model-theoretic questions of definability, axiomatization and preservation for various notions of process equivalence found in the computational literature, and answer them using well-known logical techniques (including the Compactness theorem, Saturation and Ehrenfeucht games). Moreover, we consider what happens to this (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Scattered sentences have few separable randomizations.Uri Andrews, Isaac Goldbring, Sherwood Hachtman, H. Jerome Keisler & David Marker - 2020 - Archive for Mathematical Logic 59 (5-6):743-754.
    In the paper Randomizations of Scattered Sentences, Keisler showed that if Martin’s axiom for aleph one holds, then every scattered sentence has few separable randomizations, and asked whether the conclusion could be proved in ZFC alone. We show here that the answer is “yes”. It follows that the absolute Vaught conjecture holds if and only if every \-sentence with few separable randomizations has countably many countable models.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the transitive Hull of a κ-narrow relation.Karl‐Heinz Diener & K.‐H. Diener - 1992 - Mathematical Logic Quarterly 38 (1):387-398.
    We will prove in Zermelo-Fraenkel set theory without axiom of choice that the transitive hull R* of a relation R is not much “bigger” than R itself. As a measure for the size of a relation we introduce the notion of κ+-narrowness using surjective Hartogs numbers rather than the usul injective Hartogs values. The main theorem of this paper states that the transitive hull of a κ+-narrow relation is κ+-narrow. As an immediate corollary we obtain that, for every infinite cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A generalization of the Łoś–Tarski preservation theorem.Abhisekh Sankaran, Bharat Adsul & Supratik Chakraborty - 2016 - Annals of Pure and Applied Logic 167 (3):189-210.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontology and objectivity.Thomas Hofweber - 1999 - Dissertation, Stanford University
    Ontology is the study of what there is, what kinds of things make up reality. Ontology seems to be a very difficult, rather speculative discipline. However, it is trivial to conclude that there are properties, propositions and numbers, starting from only necessarily true or analytic premises. This gives rise to a puzzle about how hard ontological questions are, and relates to a puzzle about how important they are. And it produces the ontologyobjectivity dilemma: either (certain) ontological questions can be trivially (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Game logic and its applications I.Mamoru Kaneko & Takashi Nagashima - 1996 - Studia Logica 57 (2-3):325 - 354.
    This paper provides a logic framework for investigations of game theoretical problems. We adopt an infinitary extension of classical predicate logic as the base logic of the framework. The reason for an infinitary extension is to express the common knowledge concept explicitly. Depending upon the choice of axioms on the knowledge operators, there is a hierarchy of logics. The limit case is an infinitary predicate extension of modal propositional logic KD4, and is of special interest in applications. In Part I, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A contextual–hierarchical approach to truth and the liar paradox.Michael Glanzberg - 2004 - Journal of Philosophical Logic 33 (1):27-88.
    This paper presents an approach to truth and the Liar paradox which combines elements of context dependence and hierarchy. This approach is developed formally, using the techniques of model theory in admissible sets. Special attention is paid to showing how starting with some ideas about context drawn from linguistics and philosophy of language, we can see the Liar sentence to be context dependent. Once this context dependence is properly understood, it is argued, a hierarchical structure emerges which is neither ad (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • (1 other version)A Note on the Interpolation Theorem in First Order Logic.George Weaver - 1982 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 28 (14-18):215-218.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Inexpressible properties and propositions.Thomas Hofweber - 2008 - In Dean W. Zimmerman (ed.), Oxford Studies in Metaphysics. Oxford University Press. pp. 155-206.
    Everyone working on metaphysical questions about properties or propositions knows the reaction that many non-philosophers, even nonmetaphysicians, have to such questions. Even though they agree that Fido is a dog and thus has the property (or feature or characteristic) of being a dog, it seems weird, suspicious, or confused to them to now ask what that thing, the property of being a dog, is. The same reservations do not carry over to asking what this thing, Fido, is. There is a (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)The world, the flesh and the argument from design.William Boos - 1995 - Synthese 104 (2):15 - 52.
    In the the passage just quoted from the Dialogues concerning Natural Religion, David Hume developed a thought-experiment that contravened his better-known views about "chance" expressed in his Treatise and first Enquiry. For among other consequences of the 'eternal-recurrence' hypothesis Philo proposes in this passage, it may turn out that what the vulgar call cause is nothing but a secret and concealed chance. (In this sentence, I have simply reversed "cause" and "chance" in a well-known passage from Hume's Treatise, p. 130). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An example related to Gregory’s Theorem.J. Johnson, J. F. Knight, V. Ocasio & S. VanDenDriessche - 2013 - Archive for Mathematical Logic 52 (3-4):419-434.
    In this paper, we give an example of a complete computable infinitary theory T with countable models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ and T has no uncountable model. In fact, ${\mathcal{M}}$ and ${\mathcal{N}}$ are (up to isomorphism) the only models of T. Moreover, for all computable ordinals α, the computable ${\Sigma_\alpha}$ part of T is hyperarithmetical. It follows from a theorem of Gregory (JSL 38:460–470, 1972; Not Am Math Soc 17:967–968, 1970) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kurepa trees and spectra of $${mathcal {L}}{omega 1,omega }$$ L ω 1, ω -sentences.Dima Sinapova & Ioannis Souldatos - 2020 - Archive for Mathematical Logic 59 (7-8):939-956.
    We use set-theoretic tools to make a model-theoretic contribution. In particular, we construct a single \-sentence \ that codes Kurepa trees to prove the following statements: The spectrum of \ is consistently equal to \ and also consistently equal to \\), where \ is weakly inaccessible.The amalgamation spectrum of \ is consistently equal to \ and \\), where again \ is weakly inaccessible. This is the first example of an \-sentence whose spectrum and amalgamation spectrum are consistently both right-open and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The stability spectrum for classes of atomic models.John T. Baldwin & Saharon Shelah - 2012 - Journal of Mathematical Logic 12 (1):1250001-.
    We prove two results on the stability spectrum for Lω1,ω. Here [Formula: see text] denotes an appropriate notion of Stone space of m-types over M. Theorem for unstable case: Suppose that for some positive integer m and for every α μ, K is not i-stable in μ. These results provide a new kind of sufficient condition for the unstable case and shed some light on the spectrum of strictly stable theories in this context. The methods avoid the use of compactness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Notes on quasiminimality and excellence.John T. Baldwin - 2004 - Bulletin of Symbolic Logic 10 (3):334-366.
    This paper ties together much of the model theory of the last 50 years. Shelah's attempts to generalize the Morley theorem beyond first order logic led to the notion of excellence, which is a key to the structure theory of uncountable models. The notion of Abstract Elementary Class arose naturally in attempting to prove the categoricity theorem for L ω 1 ,ω (Q). More recently, Zilber has attempted to identify canonical mathematical structures as those whose theory (in an appropriate logic) (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The world, the flesh and the argument from design.William Boos - 1994 - Synthese 101 (1):15 - 52.
    In the the passage just quoted from theDialogues concerning Natural Religion, David Hume developed a thought-experiment that contravened his better-known views about chance expressed in hisTreatise and firstEnquiry.For among other consequences of the eternal-recurrence hypothesis Philo proposes in this passage, it may turn out that what the vulgar call cause is nothing but a secret and concealed chance.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computation, among other things, is beneath us.Selmer Bringsjord - 1994 - Minds and Machines 4 (4):469-88.
    What''s computation? The received answer is that computation is a computer at work, and a computer at work is that which can be modelled as a Turing machine at work. Unfortunately, as John Searle has recently argued, and as others have agreed, the received answer appears to imply that AI and Cog Sci are a royal waste of time. The argument here is alarmingly simple: AI and Cog Sci (of the Strong sort, anyway) are committed to the view that cognition (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A strong failure of $$\aleph _0$$ ℵ 0 -stability for atomic classes.Michael C. Laskowski & Saharon Shelah - 2019 - Archive for Mathematical Logic 58 (1-2):99-118.
    We study classes of atomic models \ of a countable, complete first-order theory T. We prove that if \ is not \-small, i.e., there is an atomic model N that realizes uncountably many types over \\) for some finite \ from N, then there are \ non-isomorphic atomic models of T, each of size \.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalizing classical and effective model theory in theories of operations and classes.Paolo Mancosu - 1991 - Annals of Pure and Applied Logic 52 (3):249-308.
    Mancosu, P., Generalizing classical and effective model theory in theories of operations and classes, Annas of Pure and Applied Logic 52 249-308 . In this paper I propose a family of theories of operations and classes with the aim of developing abstract versions of model-theoretic results. The systems are closely related to those introduced and already used by Feferman for developing his program of ‘explicit mathematics’. The theories in question are two-sorted, with one kind of variable for individuals and the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Infinitary Graded Modal Logic.Maurizio Fattorosi-Barnaba & Silvano Grassotti - 1995 - Mathematical Logic Quarterly 41 (4):547-563.
    We prove a completeness theorem for Kmath image, the infinitary extension of the graded version K0 of the minimal normal logic K, allowing conjunctions and disjunctions of countable sets of formulas. This goal is achieved using both the usual tools of the normal logics with graded modalities and the machinery of the predicate infinitary logics in a version adapted to modal logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Base-free formulas in the lattice-theoretic study of compacta.Paul Bankston - 2011 - Archive for Mathematical Logic 50 (5-6):531-542.
    The languages of finitary and infinitary logic over the alphabet of bounded lattices have proven to be of considerable use in the study of compacta. Significant among the sentences of these languages are the ones that are base free, those whose truth is unchanged when we move among the lattice bases of a compactum. In this paper we define syntactically the expansive sentences, and show each of them to be base free. We also show that many well-known properties of compacta (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic of transition systems.Johan Benthem & Jan Bergstra - 1994 - Journal of Logic, Language and Information 3 (4):247-283.
    Labeled transition systems are key structures for modeling computation. In this paper, we show how they lend themselves to ordinary logical analysis (without any special new formalisms), by introducing their standard first-order theory. This perspective enables us to raise several basic model-theoretic questions of definability, axiomatization and preservation for various notions of process equivalence found in the computational literature, and answer them using well-known logical techniques (including the Compactness theorem, Saturation and Ehrenfeucht games). Moreover, we consider what happens to this (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The complexity of isomorphism for complete theories of linear orders with unary predicates.Richard Rast - 2017 - Archive for Mathematical Logic 56 (3-4):289-307.
    Suppose A is a linear order, possibly with countably many unary predicates added. We classify the isomorphism relation for countable models of Th\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Th}$$\end{document} up to Borel bi-reducibility, showing there are exactly five possibilities and characterizing exactly when each can occur in simple model-theoretic terms. We show that if the language is finite, then the theory is ℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph _0$$\end{document}-categorical or Borel complete; this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Completeness Proofs for Some Logics of Programs.Bogdan S. Chlebus - 1982 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 28 (4-7):49-62.
    Download  
     
    Export citation  
     
    Bookmark