Switch to: References

Add citations

You must login to add citations.
  1. Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The density of the nonbranching degrees.Peter A. Fejer - 1983 - Annals of Pure and Applied Logic 24 (2):113-130.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Natural factors of the Medvedev lattice capturing IPC.Rutger Kuyper - 2014 - Archive for Mathematical Logic 53 (7):865-879.
    Skvortsova showed that there is a factor of the Medvedev lattice which captures intuitionistic propositional logic (IPC). However, her factor is unnatural in the sense that it is constructed in an ad hoc manner. We present a more natural example of such a factor. We also show that the theory of every non-trivial factor of the Medvedev lattice is contained in Jankov’s logic, the deductive closure of IPC plus the weak law of the excluded middle $${\neg p \vee \neg \neg (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Local definitions in degeree structures: The Turing jump, hyperdegrees and beyond.Richard A. Shore - 2007 - Bulletin of Symbolic Logic 13 (2):226-239.
    There are $\Pi_5$ formulas in the language of the Turing degrees, D, with ≤, ∨ and $\vedge$ , that define the relations $x" \leq y"$ , x" = y" and so $x \in L_{2}(y)=\{x\geqy|x"=y"\}$ in any jump ideal containing $0^(\omega)$ . There are also $\Sigma_6$ & $\Pi_6$ and $\Pi_8$ formulas that define the relations w = x" and w = x', respectively, in any such ideal I. In the language with just ≤ the quantifier complexity of each of these definitions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conjectures and questions from Gerald Sacks's Degrees of Unsolvability.Richard A. Shore - 1997 - Archive for Mathematical Logic 36 (4-5):233-253.
    We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Priority constructions.J. R. Shoenfield - 1996 - Annals of Pure and Applied Logic 81 (1-3):115-123.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the enumeration degrees (D\sb e) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A degree-theoretic definition of the ramified analytical hierarchy.Carl G. Jockusch & Stephen G. Simpson - 1976 - Annals of Mathematical Logic 10 (1):1-32.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Refining the Taming of the Reverse Mathematics Zoo.Sam Sanders - 2018 - Notre Dame Journal of Formal Logic 59 (4):579-597.
    Reverse mathematics is a program in the foundations of mathematics. It provides an elegant classification in which the majority of theorems of ordinary mathematics fall into only five categories, based on the “big five” logical systems. Recently, a lot of effort has been directed toward finding exceptional theorems, that is, those which fall outside the big five. The so-called reverse mathematics zoo is a collection of such exceptional theorems. It was previously shown that a number of uniform versions of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Degree structures: Local and global investigations.Richard A. Shore - 2006 - Bulletin of Symbolic Logic 12 (3):369-389.
    The occasion of a retiring presidential address seems like a time to look back, take stock and perhaps look ahead.Institutionally, it was an honor to serve as President of the Association and I want to thank my teachers and predecessors for guidance and advice and my fellow officers and our publisher for their work and support. To all of the members who answered my calls to chair or serve on this or that committee, I offer my thanks as well. Your (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets.Robert I. Soare - 1982 - Annals of Mathematical Logic 22 (1):69.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reducibility orderings: Theories, definability and automorphisms.Anil Nerode & Richard A. Shore - 1980 - Annals of Mathematical Logic 18 (1):61-89.
    Download  
     
    Export citation  
     
    Bookmark   16 citations