Switch to: References

Add citations

You must login to add citations.
  1. On Bourbaki’s axiomatic system for set theory.Maribel Anacona, Luis Carlos Arboleda & F. Javier Pérez-Fernández - 2014 - Synthese 191 (17):4069-4098.
    In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign \(\uptau \) in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo–Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck’s proposal of adding to Bourbaki’s system the axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, at least according (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Category theory.Jean-Pierre Marquis - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual Structuralism.José Ferreirós - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (1):125-148.
    This paper defends a conceptualistic version of structuralism as the most convincing way of elaborating a philosophical understanding of structuralism in line with the classical tradition. The argument begins with a revision of the tradition of “conceptual mathematics”, incarnated in key figures of the period 1850 to 1940 like Riemann, Dedekind, Hilbert or Noether, showing how it led to a structuralist methodology. Then the tension between the ‘presuppositionless’ approach of those authors, and the platonism of some recent versions of philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Husserl, Intentionality and Mathematics: Geometry and Category Theory.Romero Arturo - 2022 - In Boi Luciano & Lobo Carlos (eds.), When Form Becomes Substance. Power of Gestures, Diagrammatical Intuition and Phenomenology of Space. Birkhäuser. pp. 327-358.
    The following text is divided in four parts. The first presents the inner relation between the phenomenological concept of intentionality and space in a general mathematical sense. Following this train of though the second part brie_ly characterizes the use of the geometrical concept of manifold (Mannigfaltigkeit) in Husserl’s work. In the third part we present some examples of the use of the concept in Husserl’s analyses of space, time and intersubjectivity, pointing out some dif_iculties in his endeavor. In the fourth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Problems to Structures: the Cousin Problems and the Emergence of the Sheaf Concept.Renaud Chorlay - 2009 - Archive for History of Exact Sciences 64 (1):1-73.
    Historical work on the emergence of sheaf theory has mainly concentrated on the topological origins of sheaf cohomology in the period from 1945 to 1950 and on subsequent developments. However, a shift of emphasis both in time-scale and disciplinary context can help gain new insight into the emergence of the sheaf concept. This paper concentrates on Henri Cartan’s work in the theory of analytic functions of several complex variables and the strikingly different roles it played at two stages of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Omnipresence, Multipresence and Ubiquity: Kinds of Generality in and Around Mathematics and Logics. [REVIEW]I. Grattan-Guinness - 2011 - Logica Universalis 5 (1):21-73.
    A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Complex, Dynamic and Contingent Social Processes as Patterns of Decision-Making Events – Philosophical and Mathematical Foundations.Bruno da Rocha Braga - forthcoming - European Journal of Pragmatism and American Philosophy.
    This work presents a post-positivist research framework to explain any surprising fact in the evolutionary path of a complex, dynamic and contingent social phenomenon. Primarily, it reconciles the ontological and epistemological assumptions of Critical Realism with the principles of American Pragmatism. Then, the research approach is presented: theoretical propositions about a social structure are translated into a set of grammar rules that acknowledges a pattern of sequences of events of either individual action or social interaction between actors within a real (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Bourbaki Has and Has Not Given Us.Enetz Ezenarro Arriola - 2017 - Theoria : An International Journal for Theory, History and Fundations of Science 32 (1).
    Bourbaki showed us the potential inherent within the concept of mathematical structure for re-organizing, systematically arranging and unifying the mathematical framework. But mathematics’ development in recent decades has flagged up the limitations of this approach. In this article we analyse Bourbaki’s contributions to what we term the “internal” foundations of mathematics, and at the same time we indicate where, in our view, they fall short. We go on to outline some of the evidence on which we base the viewpoint termed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Role of Symmetry in Mathematics.Noson S. Yanofsky & Mark Zelcer - 2017 - Foundations of Science 22 (3):495-515.
    Over the past few decades the notion of symmetry has played a major role in physics and in the philosophy of physics. Philosophers have used symmetry to discuss the ontology and seeming objectivity of the laws of physics. We introduce several notions of symmetry in mathematics and explain how they can also be used in resolving different problems in the philosophy of mathematics. We use symmetry to discuss the objectivity of mathematics, the role of mathematical objects, the unreasonable effectiveness of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On arbitrary sets and ZFC.José Ferreirós - 2011 - Bulletin of Symbolic Logic 17 (3):361-393.
    Set theory deals with the most fundamental existence questions in mathematics—questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Foundations as truths which organize mathematics.Colin Mclarty - 2013 - Review of Symbolic Logic 6 (1):76-86.
    The article looks briefly at Fefermans own foundations. Among many different senses of foundations, the one that mathematics needs in practice is a recognized body of truths adequate to organize definitions and proofs. Finding concise principles of this kind has been a huge achievement by mathematicians and logicians. We put ZFC and categorical foundations both into this context.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Internal Diagrams and Archetypal Reasoning in Category Theory.Eduardo Ochs - 2013 - Logica Universalis 7 (3):291-321.
    We can regard operations that discard information, like specializing to a particular case or dropping the intermediate steps of a proof, as projections, and operations that reconstruct information as liftings. By working with several projections in parallel we can make sense of statements like “Set is the archetypal Cartesian Closed Category”, which means that proofs about CCCs can be done in the “archetypal language” and then lifted to proofs in the general setting. The method works even when our archetypal language (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A New–old Characterisation of Logical Knowledge.Ivor Grattan-Guinness - 2012 - History and Philosophy of Logic 33 (3):245 - 290.
    We seek means of distinguishing logical knowledge from other kinds of knowledge, especially mathematics. The attempt is restricted to classical two-valued logic and assumes that the basic notion in logic is the proposition. First, we explain the distinction between the parts and the moments of a whole, and theories of ?sortal terms?, two theories that will feature prominently. Second, we propose that logic comprises four ?momental sectors?: the propositional and the functional calculi, the calculus of asserted propositions, and rules for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation