Switch to: References

Add citations

You must login to add citations.
  1. Randomness, relativization and Turing degrees.André Nies, Frank Stephan & Sebastiaan A. Terwijn - 2005 - Journal of Symbolic Logic 70 (2):515-535.
    We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is n-random if it is Martin-Löf random relative to ∅. We show that a set is 2-random if and only if there is a constant c such that infinitely many initial segments x of the set are c-incompressible: C ≥ |x|-c. The ‘only if' direction was obtained independently by Joseph Miller. This characterization can be extended to the case of time-bounded C-complexity. Next we prove some results (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Low upper bounds of ideals.Antonín Kučera & Theodore A. Slaman - 2009 - Journal of Symbolic Logic 74 (2):517-534.
    We show that there is a low T-upper bound for the class of K-trivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in $\Delta _2^0 $ T-degrees for which there is a low T-upper bound.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Randomness and computability: Open questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
    It is time for a new paper about open questions in the currently very active area of randomness and computability. Ambos-Spies and Kučera presented such a paper in 1999 [1]. All the question in it have been solved, except for one: is KL-randomness different from Martin-Löf randomness? This question is discussed in Section 6.Not all the questions are necessarily hard—some simply have not been tried seriously. When we think a question is a major one, and therefore likely to be hard, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Lowness for the class of random sets.Antonin Kucera & Sebastiaan Terwijn - 1999 - Journal of Symbolic Logic 64 (4):1396-1402.
    A positive answer to a question of M. van Lambalgen and D. Zambella whether there exist nonrecursive sets that are low for the class of random sets is obtained. Here a set A is low for the class RAND of random sets if RAND = RAND A.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mass problems and randomness.Stephen G. Simpson - 2005 - Bulletin of Symbolic Logic 11 (1):1-27.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if every member of Q Turing computes a member of P. We say that P is strongly reducible to Q if every member of Q Turing computes a member of P via a fixed Turing functional. The weak degrees and strong degrees are the equivalence classes of mass problems under weak and strong reducibility, respectively. We (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Truth-table Schnorr randomness and truth-table reducible randomness.Kenshi Miyabe - 2011 - Mathematical Logic Quarterly 57 (3):323-338.
    Schnorr randomness and computable randomness are natural concepts of random sequences. However van Lambalgen’s Theorem fails for both randomnesses. In this paper we define truth-table Schnorr randomness and truth-table reducible randomness, for which we prove that van Lambalgen's Theorem holds. We also show that the classes of truth-table Schnorr random reals relative to a high set contain reals Turing equivalent to the high set. It follows that each high Schnorr random real is half of a real for which van Lambalgen's (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Strong Jump-Traceability.Noam Greenberg & Dan Turetsky - 2018 - Bulletin of Symbolic Logic 24 (2):147-164.
    We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • A measure-theoretic proof of Turing incomparability.Chris J. Conidis - 2010 - Annals of Pure and Applied Logic 162 (1):83-88.
    We prove that if is an ω-model of weak weak König’s lemma and , is incomputable, then there exists , such that A and B are Turing incomparable. This extends a recent result of Kučera and Slaman who proved that if is a Scott set and , Aω, is incomputable, then there exists , Bω, such that A and B are Turing incomparable.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing k-trivial sets by incomplete random sets.Laurent Bienvenu, Adam R. Day, Noam Greenberg, Antonín Kučera, Joseph S. Miller, André Nies & Dan Turetsky - 2014 - Bulletin of Symbolic Logic 20 (1):80-90.
    EveryK-trivial set is computable from an incomplete Martin-Löf random set, i.e., a Martin-Löf random set that does not compute the halting problem.
    Download  
     
    Export citation  
     
    Bookmark   5 citations