- Projective forcing.Joan Bagaria & Roger Bosch - 1997 - Annals of Pure and Applied Logic 86 (3):237-266.details
|
|
(1 other version)Fragments of Martin's axiom and δ13 sets of reals.Joan Bagaria - 1994 - Annals of Pure and Applied Logic 69 (1):1-25.details
|
|
Generic absoluteness.Joan Bagaria & Sy D. Friedman - 2001 - Annals of Pure and Applied Logic 108 (1-3):3-13.details
|
|
On coding uncountable sets by reals.Joan Bagaria & Vladimir Kanovei - 2010 - Mathematical Logic Quarterly 56 (4):409-424.details
|
|
Stationary Cardinals.Wenzhi Sun - 1993 - Archive for Mathematical Logic 32 (6):429-442.details
|
|
Proper forcing extensions and Solovay models.Joan Bagaria & Roger Bosch - 2004 - Archive for Mathematical Logic 43 (6):739-750.details
|
|
A characterization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square(\kappa^{+})}$$\end{document} in extender models. [REVIEW]Kyriakos Kypriotakis & Martin Zeman - 2013 - Archive for Mathematical Logic 52 (1-2):67-90.details
|
|
(2 other versions)Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.details
|
|
Full reflection at a measurable cardinal.Thomas Jech & Jiří Witzany - 1994 - Journal of Symbolic Logic 59 (2):615-630.details
|
|
Martin's axioms, measurability and equiconsistency results.Jaime I. Ihoda & Saharon Shelah - 1989 - Journal of Symbolic Logic 54 (1):78-94.details
|
|
A characterization of Martin's axiom in terms of absoluteness.Joan Bagaria - 1997 - Journal of Symbolic Logic 62 (2):366-372.details
|
|
The Eightfold Way.James Cummings, Sy-David Friedman, Menachem Magidor, Assaf Rinot & Dima Sinapova - 2018 - Journal of Symbolic Logic 83 (1):349-371.details
|
|
Two Upper Bounds on Consistency Strength of $negsquare{aleph{omega}}$ and Stationary Set Reflection at Two Successive $aleph_{n}$.Martin Zeman - 2017 - Notre Dame Journal of Formal Logic 58 (3):409-432.details
|
|
On the Deductive Strength of Various Distributivity Axioms for Boolean Algebras in Set Theory.Yasuo Kanai - 2002 - Mathematical Logic Quarterly 48 (3):413-426.details
|
|
On the Consistency of the Definable Tree Property on $\aleph_1$.Amir Leshem - 2000 - Journal of Symbolic Logic 65 (3):1204-1214.details
|
|
Summable gaps.James Hirschorn - 2003 - Annals of Pure and Applied Logic 120 (1-3):1-63.details
|
|
Cardinal preserving ideals.Moti Gitik & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (4):1527-1551.details
|
|
Generic Σ3 1 absoluteness.Sy D. Friedman - 2004 - Journal of Symbolic Logic 69 (1):73-80.details
|
|
(2 other versions)1\ sets of reals.J. Bagaria & W. H. Woodin - 1997 - Journal of Symbolic Logic 62 (4):1379-1428.details
|
|
A weak variation of Shelah's I[ω₂].William Mitchell - 2004 - Journal of Symbolic Logic 69 (1):94-100.details
|
|
Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.details
|
|
Covering theorems for the core model, and an application to stationary set reflection.Sean Cox - 2010 - Annals of Pure and Applied Logic 161 (1):66-93.details
|
|
Infinitary combinatorics and modal logic.Andreas Blass - 1990 - Journal of Symbolic Logic 55 (2):761-778.details
|
|
Completeness of the Gödel–Löb Provability Logic for the Filter Sequence of Normal Measures.Mohammad Golshani & Reihane Zoghifard - 2024 - Journal of Symbolic Logic 89 (1):163-174.details
|
|
Exact equiconsistency results for Δ 3 1 -sets of reals.Haim Judah - 1992 - Archive for Mathematical Logic 32 (2):101-112.details
|
|
A microscopic approach to Souslin-tree construction, Part II.Ari Meir Brodsky & Assaf Rinot - 2021 - Annals of Pure and Applied Logic 172 (5):102904.details
|
|
Definable MAD families and forcing axioms.Vera Fischer, David Schrittesser & Thilo Weinert - 2021 - Annals of Pure and Applied Logic 172 (5):102909.details
|
|
A relative of the approachability ideal, diamond and non-saturation.Assaf Rinot - 2010 - Journal of Symbolic Logic 75 (3):1035-1065.details
|
|
The relative strengths of fragments of Martin's axiom.Joan Bagaria - 2024 - Annals of Pure and Applied Logic 175 (1):103330.details
|
|
Notes on Singular Cardinal Combinatorics.James Cummings - 2005 - Notre Dame Journal of Formal Logic 46 (3):251-282.details
|
|
In memoriam: James Earl Baumgartner (1943–2011).J. A. Larson - 2017 - Archive for Mathematical Logic 56 (7):877-909.details
|
|
Squares and covering matrices.Chris Lambie-Hanson - 2014 - Annals of Pure and Applied Logic 165 (2):673-694.details
|
|
(2 other versions)-Sets of reals.Haim Judah & Saharon Shelah - 1993 - Journal of Symbolic Logic 58 (1):72-80.details
|
|
Martin's axiom and the continuum.Haim Judah & Andrzej Rosłanowski - 1995 - Journal of Symbolic Logic 60 (2):374-391.details
|
|
Stationary reflection.Yair Hayut & Spencer Unger - 2020 - Journal of Symbolic Logic 85 (3):937-959.details
|
|
Simultaneous stationary reflection and square sequences.Yair Hayut & Chris Lambie-Hanson - 2017 - Journal of Mathematical Logic 17 (2):1750010.details
|
|
The Necessary Maximality Principle for c. c. c. forcing is equiconsistent with a weakly compact cardinal.Joel D. Hamkins & W. Hugh Woodin - 2005 - Mathematical Logic Quarterly 51 (5):493-498.details
|
|
Trees and Stationary Reflection at Double Successors of Regular Cardinals.Thomas Gilton, Maxwell Levine & Šárka Stejskalová - forthcoming - Journal of Symbolic Logic:1-31.details
|
|
Diamonds, compactness, and measure sequences.Omer Ben-Neria - 2019 - Journal of Mathematical Logic 19 (1):1950002.details
|
|
(2 other versions)Sets of reals.Joan Bagaria & W. Hugh Woodin - 1997 - Journal of Symbolic Logic 62 (4):1379-1428.details
|
|
(1 other version)Generic absoluteness.Joan Bagaria & Sy Friedman - 2001 - Annals of Pure and Applied Logic 108 (1-3):3-13.details
|
|
(1 other version)Fragments of Martin's axiom and δ< sup> 1< sub> 3 sets of reals.Joan Bagaria - 1994 - Annals of Pure and Applied Logic 69 (1):1-25.details
|
|