Switch to: References

Citations of:

Diagrammatic Reasoning in Euclid’s Elements

In Bart Van Kerkhove, Jean Paul Van Bendegem & Jonas De Vuyst (eds.), Philosophical Perspectives on Mathematical Practice. College Publications. pp. 235-267 (2010)

Add citations

You must login to add citations.
  1. Diagrammatic reasoning in Frege’s Begriffsschrift.Danielle Macbeth - 2012 - Synthese 186 (1):289-314.
    In Part III of his 1879 logic Frege proves a theorem in the theory of sequences on the basis of four definitions. He claims in Grundlagen that this proof, despite being strictly deductive, constitutes a real extension of our knowledge, that it is ampliative rather than merely explicative. Frege furthermore connects this idea of ampliative deductive proof to what he thinks of as a fruitful definition, one that draws new lines. My aim is to show that we can make good (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Epistemological Subject(s) of Mathematics.Silvia De Toffoli - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2880-2904.
    Paying attention to the inner workings of mathematicians has led to a proliferation of new themes in the philosophy of mathematics. Several of these have to do with epistemology. Philosophers of mathematical practice, however, have not (yet) systematically engaged with general (analytic) epistemology. To be sure, there are some exceptions, but they are few and far between. In this chapter, I offer an explanation of why this might be the case and show how the situation could be remedied. I contend (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Counterexample Search in Diagram‐Based Geometric Reasoning.Yacin Hamami, John Mumma & Marie Amalric - 2021 - Cognitive Science 45 (4):e12959.
    Topological relations such as inside, outside, or intersection are ubiquitous to our spatial thinking. Here, we examined how people reason deductively with topological relations between points, lines, and circles in geometric diagrams. We hypothesized in particular that a counterexample search generally underlies this type of reasoning. We first verified that educated adults without specific math training were able to produce correct diagrammatic representations contained in the premisses of an inference. Our first experiment then revealed that subjects who correctly judged an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the representational role of Euclidean diagrams: representing qua samples.Tamires Dal Magro & Matheus Valente - 2021 - Synthese 199 (1-2):3739-3760.
    We advance a theory of the representational role of Euclidean diagrams according to which they are samples of co-exact features. We contrast our theory with two other conceptions, the instantial conception and Macbeth’s iconic view, with respect to how well they accommodate three fundamental constraints on theories of the Euclidean diagrammatic practice— that Euclidean diagrams are used in proofs whose results are wholly general, that Euclidean diagrams indicate the co-exact features that the geometer is allowed to infer from them and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)When and Why Understanding Needs Phantasmata: A Moderate Interpretation of Aristotle’s De Memoria and De Anima on the Role of Images in Intellectual Activities.Caleb Cohoe - 2016 - Phronesis: A Journal for Ancient Philosophy 61 (3):337-372.
    I examine the passages where Aristotle maintains that intellectual activity employs φαντάσματα (images) and argue that he requires awareness of the relevant images. This, together with Aristotle’s claims about the universality of understanding, gives us reason to reject the interpretation of Michael Wedin and Victor Caston, on which φαντάσματα serve as the material basis for thinking. I develop a new interpretation by unpacking the comparison Aristotle makes to the role of diagrams in doing geometry. In theoretical understanding of mathematical and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On fluidity of the textual transmission in Abraham bar Hiyya’s Ḥibbur ha-Meshiḥah ve-ha-Tishboret.Michael Friedman & David Garber - 2022 - Archive for History of Exact Sciences 77 (2):123-174.
    We examine one of the well-known mathematical works of Abraham bar Ḥiyya: Ḥibbur ha-Meshiḥah ve-ha-Tishboret, written between 1116 and 1145, which is one of the first extant mathematical manuscripts in Hebrew. In the secondary literature about this work, two main theses have been presented: the first is that one Urtext exists; the second is that two recensions were written—a shorter, more practical one, and a longer, more scientific one. Critically comparing the eight known copies of the Ḥibbur, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Exploring the fruitfulness of diagrams in mathematics.Jessica Carter - 2019 - Synthese 196 (10):4011-4032.
    The paper asks whether diagrams in mathematics are particularly fruitful compared to other types of representations. In order to respond to this question a number of examples of propositions and their proofs are considered. In addition I use part of Peirce’s semiotics to characterise different types of signs used in mathematical reasoning, distinguishing between symbolic expressions and 2-dimensional diagrams. As a starting point I examine a proposal by Macbeth. Macbeth explains how it can be that objects “pop up”, e.g., as (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Human diagrammatic reasoning and seeing-as.Annalisa Coliva - 2012 - Synthese 186 (1):121-148.
    The paper addresses the issue of human diagrammatic reasoning in the context of Euclidean geometry. It develops several philosophical categories which are useful for a description and an analysis of our experience while reasoning with diagrams. In particular, it draws the attention to the role of seeing-as; it analyzes its implications for proofs in Euclidean geometry and ventures the hypothesis that geometrical judgments are analytic and a priori, after all.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Varieties of Analytic Pragmatism.Danielle Macbeth - 2012 - Philosophia 40 (1):27-39.
    In his Locke Lectures Brandom proposes to extend what he calls the project of analysis to encompass various relationships between meaning and use. As the traditional project of analysis sought to clarify various logical relations between vocabularies so Brandom’s extended project seeks to clarify various pragmatically mediated semantic relations between vocabularies. The point of the exercise in both cases is to achieve what Brandom thinks of as algebraic understanding. Because the pragmatist critique of the traditional project of analysis was precisely (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Geometric diagrams as an effective notation.John Mumma - 2024 - Philosophical Investigations 47 (4):558-583.
    In what way does a mathematical proof depend on the notation used in its presentation? This paper examines this question by analysing the computational differences, in the sense of Larkin and Simon's ‘Why a diagram is (sometimes) worth 10,000 words’, between diagrammatic and sentential notations as a means for presenting geometric proofs. Wittgenstein takes up the question of mathematical notation and proof in Section III of Remarks on the Foundations of Mathematics. After discussing his observations on a proof's ‘characteristic visual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Euclidean rigor and the curious case of the (missing) reflex angle.Anand Ekbote - 2024 - Studies in History and Philosophy of Science Part A 108 (C):10-18.
    Download  
     
    Export citation  
     
    Bookmark