Switch to: References

Add citations

You must login to add citations.
  1. Univalent foundations as structuralist foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Tales of wonder: Ian Hacking: Why is there philosophy of mathematics at all? Cambridge University Press, 2014, 304pp, $80 HB.Brendan Larvor - 2015 - Metascience 24 (3):471-478.
    Why is there Philosophy of Mathematics at all? Ian Hacking. in Metascience (2015).
    Download  
     
    Export citation  
     
    Bookmark  
  • Mac Lane, Bourbaki, and Adjoints: A Heteromorphic Retrospective.David Ellerman - manuscript
    Saunders Mac Lane famously remarked that "Bourbaki just missed" formulating adjoints in a 1948 appendix (written no doubt by Pierre Samuel) to an early draft of Algebre--which then had to wait until Daniel Kan's 1958 paper on adjoint functors. But Mac Lane was using the orthodox treatment of adjoints that only contemplates the object-to-object morphisms within a category, i.e., homomorphisms. When Samuel's treatment is reconsidered in view of the treatment of adjoints using heteromorphisms or hets (object-to-object morphisms between objects in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuitionistic logic versus paraconsistent logic. Categorical approach.Mariusz Kajetan Stopa - 2023 - Dissertation, Jagiellonian University
    The main research goal of the work is to study the notion of co-topos, its correctness, properties and relations with toposes. In particular, the dualization process proposed by proponents of co-toposes has been analyzed, which transforms certain Heyting algebras of toposes into co-Heyting ones, by which a kind of paraconsistent logic may appear in place of intuitionistic logic. It has been shown that if certain two definitions of topos are to be equivalent, then in one of them, in the context (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Stairway to Heaven: the abstract method and levels of abstraction in mathematics.Jean Pierre Marquis & Jean-Pierre Marquis - 2016 - The Mathematical Intelligencer 38 (3):41-51.
    In this paper, following the claims made by various mathematicians, I try to construct a theory of levels of abstraction. I first try to clarify the basic components of the abstract method as it developed in the first quarter of the 20th century. I then submit an explication of the notion of levels of abstraction. In the final section, I briefly explore some of main philosophical consequences of the theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cassirer and the Structural Turn in Modern Geometry.Georg Schiemer - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The paper investigates Ernst Cassirer’s structuralist account of geometrical knowledge developed in his Substanzbegriff und Funktionsbegriff. The aim here is twofold. First, to give a closer study of several developments in projective geometry that form the direct background for Cassirer’s philosophical remarks on geometrical concept formation. Specifically, the paper will survey different attempts to justify the principle of duality in projective geometry as well as Felix Klein’s generalization of the use of geometrical transformations in his Erlangen program. The second aim (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Extensionality and logicality.Gil Sagi - 2017 - Synthese (Suppl 5):1-25.
    Tarski characterized logical notions as invariant under permutations of the domain. The outcome, according to Tarski, is that our logic, which is commonly said to be a logic of extension rather than intension, is not even a logic of extension—it is a logic of cardinality. In this paper, I make this idea precise. We look at a scale inspired by Ruth Barcan Marcus of various levels of meaning: extensions, intensions and hyperintensions. On this scale, the lower the level of meaning, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Complex systems from the perspective of category theory: II. Covering systems and sheaves.Elias Zafiris - 2005 - Axiomathes 15 (2):181-190.
    Using the concept of adjunction, for the comprehension of the structure of a complex system, developed in Part I, we introduce the notion of covering systems consisting of partially or locally defined adequately understood objects. This notion incorporates the necessary and sufficient conditions for a sheaf theoretical representation of the informational content included in the structure of a complex system in terms of localization systems. Furthermore, it accommodates a formulation of an invariance property of information communication concerning the analysis of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Complex systems from the perspective of category theory: I. Functioning of the adjunction concept.Elias Zafiris - 2005 - Axiomathes 15 (1):147-158.
    We develop a category theoretical scheme for the comprehension of the information structure associated with a complex system, in terms of families of partial or local information carriers. The scheme is based on the existence of a categorical adjunction, that provides a theoretical platform for the descriptive analysis of the complex system as a process of functorial information communication.
    Download  
     
    Export citation  
     
    Bookmark  
  • Teoria kategorii i niektóre jej logiczne aspekty (Category theory and some of its logical aspects).Mariusz Stopa - 2018 - Philosophical Problems in Science 64:7-58.
    [The paper is in Polish, an English abstract is given only for information.] This article is intended for philosophers and logicians as a short partial introduction to category theory and its peculiar connection with logic. First, we consider CT itself. We give a brief insight into its history, introduce some basic definitions and present examples. In the second part, we focus on categorical topos semantics for propositional logic. We give some properties of logic in toposes, which, in general, is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Mathematical Descriptions of Truth and Change.Joseph Kouneiher & Newton da Costa - 2020 - Foundations of Science 25 (3):647-670.
    Our aim in this paper is to replace the old concept of truth in mathematics, based on the Set Structure provided with idea of true and false characterized by the presence of a characteric function \, by a mathematical structures founded on the idea of Topos, the triple structure \\}\) and the notion of Gradual Truth or Steps from the truth. Our motivations is to understand the mathematical structures underlying the emergence’s mechanism and phenomena. We think that this approach could (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some proposals for the set-theoretic foundations of category theory.Lorenzo Malatesta - 2011 - Rivista Italiana di Filosofia Analitica Junior 2 (2):41-58.
    The problem of finding proper set-theoretic foundations forcategory theory has challenged mathematician since the very beginning. In this paper we give an analysis of some of the standard approaches that havebeen proposed in the past 70 years. By means of the central notions of class and universe we suggest a possible conceptual recasting of these proposals. We focus on the intended semantics for the notion of large category in each proposed foundation. Following Feferman we give a comparison and evaluation of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is a Higher Level Set?Dimitris Tsementzis - 2016 - Philosophia Mathematica:nkw032.
    Structuralist foundations of mathematics aim for an ‘invariant’ conception of mathematics. But what should be their basic objects? Two leading answers emerge: higher groupoids or higher categories. I argue in favor of the former over the latter. First, I explain why to choose between them we need to ask the question of what is the correct ‘categorified’ version of a set. Second, I argue in favor of groupoids over categories as ‘categorified’ sets by introducing a pre-formal understanding of groupoids as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation