Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Communist Conventions for Deductive Reasoning.Sinan Dogramaci - 2013 - Noûs 49 (4):776-799.
    In section 1, I develop epistemic communism, my view of the function of epistemically evaluative terms such as ‘rational’. The function is to support the coordination of our belief-forming rules, which in turn supports the reliable acquisition of beliefs through testimony. This view is motivated by the existence of valid inferences that we hesitate to call rational. I defend the view against the worry that it fails to account for a function of evaluations within first-personal deliberation. In the rest of (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Are There Enough Injective Sets?Peter Aczel, Benno Berg, Johan Granström & Peter Schuster - 2013 - Studia Logica 101 (3):467-482.
    The axiom of choice ensures precisely that, in ZFC, every set is projective: that is, a projective object in the category of sets. In constructive ZF (CZF) the existence of enough projective sets has been discussed as an additional axiom taken from the interpretation of CZF in Martin-Löf’s intuitionistic type theory. On the other hand, every non-empty set is injective in classical ZF, which argument fails to work in CZF. The aim of this paper is to shed some light on (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum mechanics proposes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Small Steps and Great Leaps in Thought: The Epistemology of Basic Deductive Rules.Joshua Schechter - 2019 - In Magdalena Balcerak Jackson & Brendan Jackson (eds.), Reasoning: New Essays on Theoretical and Practical Thinking. Oxford University Press.
    We are justified in employing the rule of inference Modus Ponens (or one much like it) as basic in our reasoning. By contrast, we are not justified in employing a rule of inference that permits inferring to some difficult mathematical theorem from the relevant axioms in a single step. Such an inferential step is intuitively “too large” to count as justified. What accounts for this difference? In this paper, I canvass several possible explanations. I argue that the most promising approach (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Space, time and parsimony.Daniel Nolan - 2022 - Noûs 57 (4):763-783.
    This paper argues that all of the standard theories about the divisions of space and time can benefit from, and may need to rely on, parsimony considerations. More specifically, whether spacetime is discrete, gunky or pointy, there are wildly unparsimonious rivals to standard accounts that need to be resisted by proponents of those accounts, and only parsimony considerations offer a natural way of doing that resisting. Furthermore, quantitative parsimony considerations appear to be needed in many of these cases.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Large Cardinals and the Iterative Conception of Set.Neil Barton - unknown
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. One idea sometimes alluded to is that maximality considerations speak in favour of large cardinal axioms consistent with ZFC, since it appears to be `possible' to continue the hierarchy far enough to generate the relevant transfinite number. In this paper, we argue against this idea based on a priority of subset formation under the iterative conception. In particular, we argue that there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Are Large Cardinal Axioms Restrictive?Neil Barton - 2023 - Philosophia Mathematica 31 (3):372-407.
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper I question this claim. I show that there is a kind of maximality (namely absoluteness) on which large cardinal axioms come out as restrictive relative to a formal notion of restrictiveness. Within this framework, I argue that large cardinal axioms can still play many of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Possibilities, models, and intuitionistic logic: Ian Rumfitt’s The boundary stones of thought.Stewart Shapiro - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (7):812-825.
    ABSTRACTAIan Rumfitt's new book presents a distinctive and intriguing philosophy of logic, one that ultimately settles on classical logic as the uniquely correct one–or at least rebuts some prominent arguments against classical logic. The purpose of this note is to evaluate Rumfitt's perspective by focusing on some themes that have occupied me for some time: the role and importance of model theory and, in particular, the place of counter-arguments in establishing invalidity, higher-order logic, and the logical pluralism/relativism articulated in my (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In praise of replacement.Akihiro Kanamori - 2012 - Bulletin of Symbolic Logic 18 (1):46-90.
    This article serves to present a large mathematical perspective and historical basis for the Axiom of Replacement as well as to affirm its importance as a central axiom of modern set theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Emmy Noether’s first great mathematics and the culmination of first-phase logicism, formalism, and intuitionism.Colin McLarty - 2011 - Archive for History of Exact Sciences 65 (1):99-117.
    Emmy Noether’s many articles around the time that Felix Klein and David Hilbert were arranging her invitation to Göttingen include a short but brilliant note on invariants of finite groups highlighting her creativity and perspicacity in algebra. Contrary to the idea that Noether abandoned Paul Gordan’s style of mathematics for Hilbert’s, this note shows her combining them in a way she continued throughout her mature abstract algebra.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Knowledge : Motley and Complexity of Proof.Akihiro Kanamori - 2013 - Annals of the Japan Association for Philosophy of Science 21:21-35.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics.Petr Glivický & Vítězslav Kala - 2017 - Mathematical Logic Quarterly 63 (3-4):162-174.
    We study Fermat's last theorem and Catalan's conjecture in the context of weak arithmetics with exponentiation. We deal with expansions of models of arithmetical theories (in the language ) by a binary (partial or total) function e intended as an exponential. We provide a general construction of such expansions and prove that it is universal for the class of all exponentials e which satisfy a certain natural set of axioms. We construct a model and a substructure with e total and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Measurable Selections: A Bridge Between Large Cardinals and Scientific Applications?†.John P. Burgess - 2021 - Philosophia Mathematica 29 (3):353-365.
    There is no prospect of discovering measurable cardinals by radio astronomy, but this does not mean that higher set theory is entirely irrelevant to applied mathematics broadly construed. By way of example, the bearing of some celebrated descriptive-set-theoretic consequences of large cardinals on measurable-selection theory, a body of results originating with a key lemma in von Neumann’s work on the mathematical foundations of quantum theory, and further developed in connection with problems of mathematical economics, will be considered from a philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark